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Abstract

We study the consequences of policy interventions when social norms are endogenous but costly
to change. In our environment a group faces a negative externality that it partially mitigates
through social norms enforced through peer pressure. In this setting policy interventions can have
unexpected consequences. When the cost of norm redesign is high introducing a Pigouvian tax can
increase output and when the cost of norm redesign is low intervention may lead instead to tax
repeal.
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1. Introduction

We study the consequences of policy interventions in an environment where social norms are
endogenous but sticky. The environment is one in which a group engages in production that
generates a negative externality. Following Olson (1965) and Ostrom (1990) peer pressure is used
to mitigate this externality. Following Townsend (1994) and Levine and Modica (2016) we model
the endogeneity of the norms as a mechanism design problem for the group. This setup has a
distinctively Coasian flavor as the group is able partially to contend with externalities on its own.
The new feature we introduce is the idea that redesigning social norms is costly: this introduces a
stickiness in which social norms may be maintained when they are no longer optimal.4

We study a simple environment with two periods. In the first period the group designs a norm
(mechanism) anticipating the second period will likely be the same as the first. In the second period
an unanticipated intervention may take place - for example, the introduction of a Pigouvian tax.
If it does the group may, at a cost, design a new norm to cope with changed circumstances. It
may at no cost choose to maintain the existing norm. Finally, at low cost, it may simply abandon
any effort to police itself and revert to the “law of the jungle.” Our environment is constructed
so that absent any social norm - with purely individualistic behavior - increases in the size of the
intervention always reduce output.

What we find is this. If the size of the intervention is small the group does not respond at all.
There is a threshold at which output jumps. If the cost of norm redesign is small output jumps
down with the new norm and remains lower than in the first period. This is the same as we would
expect if individuals faced adjustment costs as in the widely used menu cost model of Calvo (1983).
However if the cost of norm redesign is large output jumps up - with the old norm abandoned
and not replaced by a new one - and then declines eventually becoming lower than in the first
period. Here as the intervention increases the first period norm becomes increasingly dysfunctional
until it is better simply to revert to the law of the jungle. This is a counterintuitive outcome:
output moves in the wrong direction in response to an intervention. We argue that two anomalous
experimental/empirical results in the literature accord well with this model: the field experiment
of Gneezy and Rustichini (2000) in which parents respond to a fine for picking up children late
from day-care by picking them up even later; and the natural experiment of Card and Krueger
(1994) in which fast food employment rose in response to an increase in the minimum wage. In
particular, we believe that the cost of norm redesign was relatively high because these experiments
were conducted before the advent of social media.

In the Pigouvian tax setting we examine the consequences of whether or not the tax is rebated
lump sum to the group. In standard theory this makes no difference to behavior. Here it does: in
particular if an outside agency intervenes to set a naive Pigouvian tax and keeps the proceeds there

4Levine (2012) gives evidence that social norms change very quickly when incentives for such a change are strong,
while Bigoni et al (2016) and Dell et al (2018) give evidence that social norms can be sticky when incentives for
change are weak.
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will be underproduction. We also study welfare. If the group keeps the tax revenue - which we
believe is effectively the case in the school setting of Gneezy and Rustichini (2000) - and production
increases, this is evidence of a welfare improvement: it means the policy is a success notwithstanding
the increase in production it brings about.

Finally, we study the attitude of the group towards Pigouvian taxes. Even if the outside agency
keeps all the tax revenue the group generally prefers a non-zero tax rate, but less than the Pigouvian
level. Consequently when the cost of norm redesign is low - as we believe it is today with the advent
of social media - an increase in the tax to the Pigouvian level may prompt the group to reorganize.
There is, however, a catch: a group unlike an individual may organize not only to adjust output,
but may have options to repeal the tax. We argue that this is what was documented by Boyer et
al (2019) when a modest decrease in the speed-limit in France in 2018 resulted in the destruction
of most of the speed cameras in that country.

2. The Model

We consider a large organized group over two periods t = 1, 2. In each period identical group
members i ∈ [0, 1] engage in production choosing a real valued level of output X ≥ xit ≥ 0. The
utility of a member i in period t depends upon their common real valued public characteristics
ωt ≥ 0, their own output, and the average output of the group xt =

∫
xitdi according to a smooth

function u(ωt, xt, x
i
t). We always assume that as function of individual output xit utility is well-

behaved in the sense that it is strictly differentiably concave.5 In the second period there are two
possibilities: it may be the same as the first period with ω2 = ω1, or an intervention may take place
in which case ω2 > ω1 with ω2 < ω. At the beginning of the second period it is known whether or
not an intervention has taken place. Our focus will be on the case where the chance of intervention
is a priori regarded as low, that is, the intervention is “unanticipated.”

The presence of xt represents an externality that we assume is negative. Because of the exter-
nality the group collectively faces a mechanism design problem, and we assume that incentives can
be given to group members in the form of individual punishments based on monitoring of individual
behavior: the group can set production quotas yit, receives signals of whether or not these quotas
were violated and based on these signals it can impose punishments.6 Specifically monitoring gen-
erates a noisy signal zit ∈ {0, 1} of whether member i exceeded the quota (xit > yit) where 0 means
“good, respected the quota” and 1 means “bad, exceeded the quota.” If the quota was honored
(xit ≤ yit) the bad signal occurs with probability π > 0; if the quota was violated the probability
of the bad signal is higher π1 > π. We define the monitoring difficulty as θ = π/(π1 − π). There

5For functions of a single variable f(x) we denote derivatives as f ′(x), f ′′(x) and so forth. For functions of several
variables f(x, y) we denote partial derivatives by D1f(x, y) ≡ ∂f/∂x,D12f(x, y) ≡ ∂2f/∂x∂y and so forth. By strict
differentiable concavity we mean that the second derivative is strictly negative, or in the multi-variate case that the
matrix of second derivatives is negative definite - this is sufficient, but not necessary, for strict concavity. We shall
also say that a solution is “weakly interior” when upper and lower bounds do not strictly bind.

6Note that in a large group with noisy signals collective punishments, such as price wars, are useless. See Fudenberg,
Levine and Pesendorfer (1998).
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is limited commitment so that punishments must take place in the period in which the signal is
received, and when the signal is bad7 the group imposes an endogenous utility penalty of P it . This
may be in the form of social disapproval or even in the form of monetary penalties.8

The tools available for mechanism design, in other words, consist of quotas yit, together with
punishments for a bad signal P it . The overall period t utility of a member i who abides by the
quota (xit ≤ yit) is therefore u(ωt, xt, x

i
t) − πP it and for one who violates the quota (xit > yit)

is u(ωt, xt, x
i
t) − π1P

i
t . These utilities define a game for the group members. If the mechanism

designer chooses
(
yit, P

i
t

)
we denote by X

(
yit, P

i
t

)
the set of pure strategy Nash equilibria of this

game. In the Appendix Theorem 7 we show that X
(
yit, P

i
t

)
is closed and non-empty. We refer

to a triple
(
xit, y

i
t, P

i
t

)
with

(
xit
)
∈ X

(
yit, P

i
t

)
as an incentive compatible social norm. If a social

norm issues no punishments (P it = 0) we call it a default social norm. The mechanism designer is
benevolent and cares about average expected utility, so receives period t utility from a social norm(
xit, y

i
t, P

i
t

)
of

W
(
xit, y

i
t, P

i
t

)
≡
∫ [

u(ωt,

∫
xitdi, x

i
t)− 1[xit > yit]π1P

i
t − 1[xit ≤ yit]πP it

]
di.

For any type ωt and average output x we say xb(ωt, x) is a best response if it is a maximizer
of u(ωt, x, x

i). It is shown in the Appendix, Theorem 2, that it is sufficient to restrict attention to
incentive compatible common quotas yt and that the optimal quota is the unique solution of

maxu(ωt, yt, yt)− θ
[
u(ωt, yt, x

b(ωt, yt))− u(ωt, yt, yt)
]
.

The term subtracted from individual utility represents the monitoring cost due to the need for the
quota to be incentive compatible. We denote by yc(ωt) the solution to this problem.

Adjustment Costs and the Mechanism Design Problem

In the initial period t = 1 the group solves the mechanism design problem of choosing an
incentive compatible simple social norm

(
xi1, y

i
1, P

i
1

)
as if the second period will be the same as the

first. As there is limited commitment and no connection between the two periods, this amounts
to ignoring the second period and maximizing period 1 designer utility over incentive compatible
social norms. We denote by ys = yc(ω1) the resulting quota.

In period 2 after observing whether or not there is an intervention the mechanism designer
maximizes second period utility, but there are now three possibilities:

1. The initial design
(
yi1, P

i
1

)
can be costlessly maintained, with the designer choosing any

(
xi2
)

7In principle punishments could be issued even for a good signal: as incentives depend only on the difference
in punishment between the good and bad signal and punishments are costly this will not be part of an optimal
mechanism, so for notational simplicity we rule it out.

8In principle the group might also impose downward quotas against underproduction. In the Appendix we show
that because the externality is negative if there is any cost associated with this then the group strictly prefers not to
do so, so for notational simplicity we do not consider this possibility in the text.
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such that
(
xi2, y

i
1, P

i
1

)
is incentive compatible.

2. For a fixed cost of f ≥ 0 an incentive compatible default social norm
(
xi2, y

i
2, 0
)
may be chosen.

3. For a fixed cost of F > f an arbitrary incentive compatible social norm
(
xi2, y

i
2, P

i
2

)
may be

chosen.

The fixed costs of adjustment are in the spirit of menu costs in the macroeconomic literature as in
Calvo (1983).9 Here our basic presumption, subsequently to be reflected in a specific assumption,
is that f is small while F need not be. The idea is that reverting to an incentive compatible default
social norm is a decentralized decision in the spirit of the ethical voter model or rule utilitarianism:10

if it is evident that the default social norm is superior to the alternatives there is no need to get
together to discuss this and reach an agreement, implicitly everyone has agreed in advance that
in this case they will all go their own way. By contrast developing a new social norm cannot be
decentralized and the group must be reconvened to reach a collective agreement on the new norm.

To be specific about f let M denote the monitoring cost of implementing the simple norm:

M ≡ θ
[
u(ω1, y

s, xb(ω1, y
s))− u(ω1, y

s, ys)
]
.

It is shown in the Appendix that M > 0. The assumption on f , maintained throughout, is that
f < M .

Costly Contemplation. In models of costly adjustment of plans the question always arises: why not
plan for the contingency in advance? Instead of choosing a simple social norm

(
xi1, y

i
1, P

i
1

)
in period

one and waiting to see if there is reason to change in period two, why not also choose at the same
time a plan

(
xi2, y

i
2, P

i
2

)
conditional on whether or not there is an intervention? In this case there

would be no stickiness.
This issue is not a new one: it is closely connected to the literature on incomplete contracts

and on rational inattention. The incomplete contracting literature, such as Hart and Moore (1988),
deals with a situation where it is expensive to specify a contingency in a way that can be enforced
in court. The situation here is different in that the agreement is informal, so it is enough that
everyone understands what the contingencies are. The literature on rational inattention, such as
Sims (2003), recognizes that it is costly to acquire information about the right decision in the
second period in order to make a plan. This differs from our model in one important respect: in
a rational inattention model there is information, albeit noisy, about what the second period will
be like and it will in general be optimal in the first period not to choose a simple social norm that
is optimal in the absence of intervention but rather to hedge a little and choose a social norm that
would do a little better in case of an intervention and a little less well in case of no intervention.
We think that this type of hedging is costly because it requires active contemplation of what the
future is like.

9The fixed costs might well depend on the size of the group: for example Levine and Modica (2017) assume it is
proportional to group size. Here we are keeping the size of the population fixed.

10See, for example, Fedderson and Sandroni (2006).
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Our model is one of unawareness in the sense of Modica and Rustichini (1994) and in the spirit
of Tirole (2009) and Dye (1985). It is based on the idea of costly contemplation studied by Ergin
and Sarver (2010). The idea is that the second period is like a box: we can either open it and take
account of what is in it, or we can simply leave it closed and ignore it. In the model of Ergin and
Sarver (2010) as the subjective perception that the box contains an intervention11 grows small the
subjective benefit of opening the box goes to zero. Since contemplation is costly it is best not to
open the box at all: just optimize in the first period as if the second period will be the same. This
is our model.

A Motivating Example: Pigou

In our first example we consider a simple negative externality where the intervention is a Pigou-
vian tax. Output xit brings an individual benefit U(xit) which is strictly concave U ′′(xit) < 0 and
a social cost L(xit) strictly increasing L′(xt) > 0 and weakly convex L′′(xt) ≥ 0. In one specific
application output will be driving speed, with higher speed bringing an individual reduction in
commuting time but a social cost in the form of more accidents.

The intervention is a Pigouvian tax ωtxit imposed by an outside agency. Here the type corre-
sponds to the tax rate.12

We impose two boundary conditions, the first that the individual marginal benefit is large at the
lower bound in the sense that U ′(0) > L′(0)+ω and the second that the upper bound is sufficiently
large that individual benefit is no longer strictly increasing U ′(X) ≤ 0.

A portion of the tax α ∈ [0, 1] is returned to the group as an equally distributed lump sum,
with the remainder going to the outside agency imposing the tax; so member i’s utility function
can be written as

u(ωt, xt, x
i
t) = U(xit)− ωtxit − L(xt) + αωtxt.

We also want to ensure that there is an adequate range of policy interventions. To do so we will
require that the initial tax rate not be too high and that the maximum possible tax rate be “high
enough.” Specifically, we allow but do not require that the initial tax is zero, but we do require
that the initial marginal tax is not too large in the sense that ω1 < L′(X).

Under these assumptions we show in the Appendix that there is a unique solution x∗ to the
problem of maximizing u(ω1, xt, xt), and that it lies in the interior. Our final assumption is that
the highest tax rate is high enough that it becomes individually optimal to implement x∗, that is,
U ′(x∗) − ω = 0. In the case where ω1 corresponds to no tax and there is a full rebate α = 1, this
says that ω is “the” Pigouvian tax. We do not examine the consequences of setting tax rates higher
than this.

11Or contains some other change: There may be many other things in the box besides an intervention to ϕ, ω2 -
trade wars, new products, and so forth, and the intervention may not be the most important.

12Our applications involve limits Λ and a fine Φ if realized output exceeds the limit. In the Appendix we show
that if xi

t represents a minimum intended output and realized output is the product of xi
t and a standard Pareto

distributed random variable the tax is proportional to ΦΛ−1xi
t. In this case ωt is the ratio of the fine to the limit.
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General Assumptions on Individual Utility

We next consider general assumptions that assure that utility u(ωi, xt, x
i
t) is well-behaved and

that capture the idea of a negative externality present in the Pigou example. First we require that
individual optimization problems be well behaved. In addition to assuming that as a function of
individual output xit utility u(ωi, xt, x

i
t) is strictly differentiably concave, as in the Pigou example,

it should satisfy the boundary conditions D3u(ωi, xt, 0) ≥ 0 and D3u(ωi, xt, X) ≤ 0. Second we
assume that the social planner problem is well-behaved: as in the Pigou example, u(ωi, xt, xt)

should be strictly differentiably concave in xt with D2u(ωi, 0, 0) +D3u(ωi, 0, 0) > 0.
Our interest is in the case of negative externalities. One interpretation of this is that that for xit >

0 average output xt reduces utilityD2u(ωi, xt, x
i
t) < 0, but this is not satisfied in the Pigou example,

so we make the weaker assumption that D2u(ωi, xt, x
i
t) ≥ 0 and xit > 0 imply D3u(ωk, xt, xt) > 0,

that is, the externality can only be positive if individuals also want to increase output. Taken
together with earlier assumptions this assures that there is a region where the externality is negative
and conflicts with the individual incentives. We assume also that the externality does not increase
the individual marginal benefit from increasing output: D32u(ωi, xt, x

i
t) ≤ 0. (This is zero in the

Pigou example.)
The types of interventions we are interested in are those like Pigouvian taxes that reduce the

individual incentive to over-produce. Hence higher types are assumed to have less benefit from
output in the sense that both the individual incentive to produce is reduced D31u(ωi, xt, x

i
t) < 0

and the social incentive to produce is not increasedD21u(ωi, xt, xt)+D31u(ωi, xt, xt) ≤ 0. Moreover,
to assure an adequate range of interventions, we assume that very high types have little individual
incentive to produce in the following sense: if average output is high enough that the social incentive
to produce is negative with the lowest type, D2u(ω1, xt, xt) +D3u(ω1, xt, xt) < 0, then the highest
type prefers not to produce so much, or D3u(ω, xt, xt) < 0.

Finally we make two technical assumptions that assure that even for very great monitoring
difficulty the objective function in the presence of monitoring costs maintains the same basic prop-
erties as the underlying objective function: specifically we assume that D223u(ωj , xt, x

i
t) ≥ 0 and

D123u(ωj , xt, x
i
t) ≥ 0.

In the Appendix we verify that all these assumptions are satisfied in the Pigou example (all the
above assumptions are numbered and presented in a table there for convenience before proofs).

Another Example: Cournot

As a second, rather different, example we will consider a group of firms that operates as a
cartel, where the intervention is the imposition of (or an increase in) a minimum wage. Here we
take u(ωi, xt, x

i
t) = p(xt)x

i
t− c(ωi, xit) where p(xt) is the market price and c(ωi, xit) is the cost for a

firm facing a minimum wage of ωi. We may define revenue as r(xt) ≡ p(xt)xt.
We make relatively standard assumptions that assure that the monopoly problem is well-

behaved: price is positive, strictly downwards sloping and marginal revenue is also strictly down-
wards sloping. We also make the plausible although less common assumption that price is convex,
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that is, p′′(xt) ≥ 0. (We note that all these assumption are satisfied by linear demand.) Marginal
cost D2c(ω

i, xit) is positive, strictly upwards sloping and strictly increasing in the minimum wage ωi.
We assume that a type ω facing the highest possible minimum wage is still willing to enter at the
lowest price p(X), and that the type facing the lowest minimum wage ω1 is not willing to produce
to capacity X at the highest possible price p(0). Under these assumptions at ω1 there is a unique
level of monopoly output xm that maximizes r(xt)− c(ω1, xt), and this lies in the interior (see the
Appendix). To ensure an adequate range of interventions we assume that at xm the marginal cost
for highest type ω is higher than the monopoly price: D2c(ω, x

m) > p(xm).
In the Appendix we verify that under these assumptions the Cournot model satisfies the general

assumptions above.

3. Comparative Statics of Intervention

We examine the comparative statics of increasing ω2 from the initial level ω1 towards the upper
bound ω in the different regions of the parameter space θ, f, F : how does optimal average output
vary?

Recall that there are three alternatives: stick to the existing quota plan, revert to an incentive
compatible default social norm, or choose a new social norm, so that optimal average output -
which we denote by yo(ω2) - may be any of them. For the default social norm, which is just Nash
equilibrium in

(
xit
)
, we denote that output by yd(ω2). Recall that yc(ω2) denotes output if a new

optimal social norm is chosen and that the quota in the initial simple norm is denoted by ys.

The Classical Case

Our first result, Theorem 6 in the Appendix, characterizes the default social norm.

Theorem 1. The default social norm yd(ω2) is well-defined, weakly interior, smooth and strictly
decreasing.

Theorem 1 shows that in a standard setting without social norms, that is, for a Nash equilibrium
of the game played by group members without quotas or punishments, we have the expected result:
increasing the cost ω2 of producing output reduces the output yd(ω2). This is the source of our
basic intuition about the effect of Pigouvian taxes, minimum wages, and the like. In the current
setting it may be regarded as the limiting case where π1 = π and the signal is uninformative, in
which case there is no room for peer-disciplined social norms.

The Main Result

The main result of this paper concerns the case in which monitoring is feasible, that is π1 > π.
The basic picture is that as ω2 increases output is initially constant due to stickiness of the existing
norm. There is a threshold at which it jumps and then (in a general sense) starts to decline and
ultimately for high enough ω2 is lower than in the first period. The anomaly relative to classical
theory is that for large F output may jump up rather than down. We next report the details,
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breaking the presentation in three parts. In the Appendix the main ideas leading to the formal
proofs are explained at some length.

I. Small Scale Interventions

Theorems 9 and 10 in the Appendix show that

Theorem 2. For generic f, F there exists a threshold ω2 > ω1 such that ω2 < ω2 implies yo(ω2) =

ys.

In the region where the intervention is small ω2 < ω2 optimal output does not change from the
period 1 level. This is what one would expect but it is useful to understand what is happening here.
Quotas do not constrain individual members from reducing output in response to the increased cost.
However, at ω1 the quotas bind - all would like to produce more - so with a small increase in costs
they prefer to stick at the quota and not reduce output. This consequence is the same as would be
the case if there were individual adjustment costs - a small change in incentives would not make it
worthwhile to bear a fixed cost of adjusting output - but the reason for the “stickiness” is different.

II. Low Renegotiation Cost: Small F

Theorems 8 and 10 in the Appendix show that

Theorem 3. There exist cost thresholds F > F− > 0 such that for generic f, F there exists a
threshold ω̂2 > ω2 and for all sufficiently small ε > 0

(i) F < F− implies yo(ω2) ≤ ys and for ω2 > ω2 we have yo(ω2) < ys

(ii) F < F and ω2 > ω̂2 imply yo(ω2) < ys

(iii) F < F and ω2 < ω2 < ω2 + ε imply yo(ω2) = yc(ω2) < ys − ε and decreasing in ω2

As ω2 increases initially output is flat until we reach ω2. At this point it jumps down (iii). If F
is small enough (i) it remains strictly smaller than in the first period, and also if ω2 is large enough
(ii). Here because F is small the choice is basically between sticking at the previous level of output
and re-optimizing - there is little advantage to be found in the default social norm. The result
is homologous to what we expect in the case that there are individual adjustment costs: after a
threshold is reached, it is best to re-optimize and output drops.

III. High Renegotiation Cost: Large F

Theorems 8 and 9 in the Appendix show that

Theorem 4. There exists a cost threshold F+ > F such that for generic f, F there exists a threshold
ω̂2 > ω2 and for all sufficiently small ε > 0

(i) F > F+ and ω2 > ω2 imply yo(ω2) is decreasing
(ii) F > F and ω2 < ω2 < ω2 + ε imply yo(ω2) = yd(ω2) > ys + ε and decreasing in ω2

(iii) F > F and ω2 > ω̂2 imply yo(ω2) < ys

9



As ω2 increases initially output is flat until we reach ω2. At this point it jumps up and begins
to decline (part ii). If F is large enough (i) it declines for all ω2 > ω2, but regardless (iii) for
large enough ω2 it is strictly smaller than in the first period. In this case because F is large the
choice is basically between sticking at the previous level of output or reverting to the default social
norm. And at the switch point, where the group is indifferent between simple and default norms,
yd(ω2) > ys so output jumps up. This is because as ω2 increases eventually the default output level
yd(ω2) falls to ys. However, when yd(ω2) = ys the default norm is strictly better than the simple
norm since it yields the same output at cost f rather than M > f . Hence the switch in fact takes
place when yd(ω2) > ys which is why output jumps up.

This result has no analog when there are individual adjustment costs and is unique to a model
of social mechanisms. Here we have initial stickiness followed by a discrete change in output - but in
the wrong direction. Moreover, in this case a modest intervention provides misleading information
about the consequences of a large intervention: a large enough intervention always lowers output,
but the modest intervention has the opposite effect.

4. Increased Externality in the Face of Intervention

One unique prediction of our model is the possibility of output jumping upwards in response to
an increase in a Pigouvian tax (Theorem 4), which as already noticed is counter-intuitive and not
accounted for by the classical theory. In this section we apply the theorem to interpret the findings
of two papers - Gneezy and Rustichini (2000) and Card and Krueger (1994) - reporting observed
upward jumps.

Case Study: School Fines

Gneezy and Rustichini (2000) showed that introducing modest incentives can lead to the dis-
couragement of the activity it is designed to promote: they showed that introducing a modest fine
for being late to pick up children at a day-care center resulted in more parents picking up their
children late. A behavioral interpretation of the finding can be found in Benabou and Tirole (2006).
The idea there is that in the absence of fines, picking up children on time serves a valuable signal-
ing purpose. With fines, the signaling value of being on time is lowered enough that it becomes
worthwhile to be a little late and pay the fine.

In our setting the intervention ωt represents the level of the fine. In the field experiment initially
there was no fine ω1 = 0, then one was imposed ω2 > 0. As there was no prior warning or discussion
of the fine, it is reasonable to think it was unanticipated. From a social point of view it is likely both
that parents at day-care know each other and that there are some mild social sanctions towards
parents who are persistently late - in fact it is unlikely that prior to the fine parents simply picked
up their children at the moment of the day they personally found most convenient. Moreover, as
the fine was introduced suddenly and without explanation it might well have been anticipated to be
of short duration (as in fact it was) so that it would not be worth renegotiating to identify the new
optimal social norm. Moreover, the field experiment was conducted in 1998 well before the advent
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of social media (Facebook was founded in 2004). That is: it is plausible that F was relatively large
in this case.

Given large F and an intermediate level of fine, the interpretation of the Gneezy-Rustichini
finding according to Theorem 4(ii) is that while prior to the fine lateness was disciplined through a
social norm among parents, after its imposition the old norm was abandoned and not replaced by
a new one, and consequently lateness increased.13

Case Study: Minimum Wage

In the Cournot setting ω2 represents a minimum wage for unskilled workers. In the absence
of norms the classical result applies that an increase of the minimum wage results in a drop in
production. When firms can be viewed as member of a norm-enforcing large cartel Theorem 4
raises the possibility of output jumping upwards in response to an increase in the minimum wage if
the change is neither too small nor too large. The rationale according to our model is the same as in
the day-care case: the increase in output is due to the old norm being abandoned and not replaced
by a new one. Typically studies of the minimum wage examine employment rather than output.
With multiple factors of production there is substitution that will tend to lower employment of
unskilled labor so the latter may go down while output increases. In the extreme case where
unskilled labor is needed in fixed proportion with an aggregate of other factors of production - that
is the relationship between unskilled labor and the aggregate is Leontief - then the employment of
unskilled labor will be proportional to output. More generally if other factors are poor substitutes
for unskilled labor then the output effect will dominate the substitution effect and there can be an
upward jump in employment of unskilled labor in response to a minimum wage increase. This has
been observed at least once in the study of the impact of a 1992 minimum wage increase in New
Jersey on employment of unskilled labor in the fast food industry by Card and Krueger (1994).

5. Redistribution, Group Welfare and Behavior

Welfare

We turn next to the welfare consequences of using a Pigouvian tax in place of the informal
system of sanctions set up by the group. We first consider the case in which α = 1, so the
entire proceeds of the tax are returned to the group. In the day care experiment this may be
a reasonable approximation: since the school is supported by fees from the parents and different
schools compete with each other. Implicitly, the money from fines either reduces what parents have
to pay, or increases the services they receive.

What are the welfare consequences of intervention? With small scale interventions output
remains unchanged and the intervention has no welfare consequence at all. Behavior does not

13Our theory does not explain why when the fine was removed parents continued being late - however, the data
after the fine was removed is very short in duration so we cannot say whether in a few more weeks or months lateness
began to drop. In general we expect the frictions (and time) to agree to a non-trivial social norm to be greater than
that needed to revert to the default.
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change, taxes are collected from group members but returned lump sum so everybody is exactly
as well off as in the first period. In the day-care case study we argued that F is likely to be large,
so when the jump in output occurs at ω2 the group is indifferent between the simple social norm
and the default social norm, so welfare at the default social norm is also the same as in the first
period. As the intervention increases output then declines: this increases welfare. The taxes are a
wash, being collected and returned to the group, but since output was greater than the first best,
the reduction makes everyone better off.

In the classical analysis the upward jump in output is regarded as a failure of policy. The goal
of the policy is to reduce output in the face of an externality. But that analysis misses the mark.
Here increased output is an indication that the policy has a desirable effect. While the increase
in output has a negative consequence for welfare, overall welfare goes up because by switching to
the default social norm the cost of monitoring is avoided and this more than makes up for the loss
from increased output.

What about the case in which F is low and the switch is to a new social norm? Here we might
ask a broader question. In this model a formal tax can be levied only by an outside agency; the
group itself has access only to informal punishments. Never-the-less it is useful to ask what the
group would do if it could control the tax as well as use informal sanctions - and indeed, there are
circumstances where the group may be able to influence the outside agency setting the taxes. In
the case where α = 1 Theorem 11 in the Appendix shows that if the group can choose ωt along
with yt, Pt then welfare is unambiguously increasing with the level of tax (bear in mind we have
assumed it can be no higher than the optimal Pigouvian tax). The key element of a tax (with full
rebate) is that it is simply a transfer payment within the group: there is no net loss of utility to the
group in carrying out a punishment in the form of a fine. By contrast the informal punishments
P it represent a net loss to the group. Hence the fine technology is a superior technology and if it is
available the group prefers to use that in place of informal enforcement.

In the case of intervention the implication is that once the jump (down) takes place to a new
social norm, group welfare is increasing with the level of the tax. Overall an intervention with a
Pigouvian tax is either neutral (if the intervention is too small) or an improvement.

The situation is different in the case in which α < 1 so that only some of the proceeds of the
tax are returned to the group with the remainder being taken by the outside agency. In classical
theory lump sum transfers are not supposed to matter, and indeed it is sometimes argued that a
policy is desirable if it is possible to pay compensation in the form of lump sum transfers and make
everyone better off. As we shall see in the face of social mechanisms this can be misleading. We
focus in particular on the difference in incentives between the group and the outside planner.

To see the difference in incentives recall that when α = 1, so incentive are aligned, after the
jump at ω2 the welfare of the group is increasing in the ω2. In the case α < 1 locally the opposite
is true: at the jump point the group is necessarily indifferent, so utility just after the jump is close
to indifferent. However, while with α = 1 group welfare did not change in the region ω1 ≤ ω2 ≤ ω2

when α < 1 welfare necessarily decreases due to the fact that taxes are collected and not all are
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returned. Hence after the jump the group remain worse off than at ω1.

Behavioral Consequences

The difference in incentives has behavioral consequences as well. Often behavioral economists
consider naive agents unable to discern their personal interest against sophisticated planners who
are better able to determine what is best for individuals. We will take the opposite point of view,
and consider a naive planner. A naive planner chooses a Pigouvian tax ignoring the fact that it
may be α < 1: it chooses the tax so that it is individually optimal to produce the x∗ maximizing
U(x) − L(x), that is it chooses ω∗ satisfying U ′(x∗) = L′(x∗) = ω∗. In other words it computes
the marginal cost of the externality and sets the tax equal to that (note that in case α = 1 it is
ω∗ = ω). In all the debates we have seen about, for example, a carbon tax, this seems to be the
computation made by planners and would-be planners. Suppose this Pigouvian tax is in fact set
but that α < 1.14

It is shown in the Appendix Theorem 2 that if the group chooses a new social norm it maximizes

W1(y
i
t) ≡ −(1−α)τ(ω∗, yit)+U(yit)−L(yit)−θ

[(
U(xb(ω∗, yit))− τ(ω∗, xb(ω∗, yit))

)
−
(
U(yit)− τ(ω∗, yit)

)]
.

With the Pigouvian tax xb(ω∗, x∗) = x∗, hence the derivative of this expression is

W ′1(y
i
t) ≡ −(1− α)ω∗ + U ′(yit)− L′(yit) + θ

[(
U ′(yit)− ω∗

)]
.

If in fact α = 1 we see that the first order condition is satisfied at x∗ as we expect. If α < 1

we see that the derivative is strictly smaller, implying that the (unique) solution of the first order
condition must be smaller: yo < x∗.

In other words: behavior is not invariant to distribution, and a naive planner who sets a
Pigouvian tax with α < 1 will not induce optimal output, but will induce underproduction.

6. Partial Redistribution and Tax Repeal

Let us again address the broader issue of what the group would do if it could influence taxes
as well as control informal sanctions. For any given α let Ω(α) denote the set of optimal taxes
for the group, that is the set of taxes that are part of a solution to the design problem in which
they choose taxes, quotas, and punishments. This problem is not as straightforward as it seems.
Consider for example the Pigouvian tax in a situation where θ is large and α small. To lower the
tax creates a dilemma: true it creates a tax gain to the group. At the same time it creates an
incentive to increase output. Because θ is large it is costly to keep prevent output from increasing
a lot. However: if it is allowed to increase a lot since α is quite small that creates a large tax loss.

14For technical reasons we have not actually allowed the limit case ω2 = ω. The reason for this is that in the limit
case the upward constraints do not strictly bind and our results about strict inequalities do not hold. To avoid a
series of special cases in which they hold only weakly we have ruled out this case. Modulo the upward constraints
not strictly binding, the case ω2 = ω is otherwise well behaved.
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Hence it may actually be best to raise the tax and use the improved incentive to reduce output
thereby offsetting the tax loss from the increased tax.

In the Appendix Theorem 12 we show that if θ is small and α is large in fact the optimal tax
must decline as α goes down. Specifically

Theorem 5. There exists θ > 0, α(θ) < 1 such that for 0 < θ < θ, α(θ) < α ≤ 1 the optimal tax
ω∗2(α) is unique, smooth and strictly differentiably increasing in α with ω∗2(1) the Pigouvian tax.

Consider then the case where this is true, that F is small and that a naive planner observes
that current taxes are below the Pigouvian level (perhaps because the group was able to influence
taxes in the first period). The planner then intervenes to raise taxes to the Pigouvian level. As F
is small the group is willing to organize itself and find a new social norm. Once it is designing a
new mechanism, if it can influence taxes, it might choose to redesign taxes as well. That is, rather
than improving efficiency, the naive planner may instead create a political backlash that will lead
to lower rather than higher taxes.

Case Study: Yellow Vests

Groups responding to the imposition of naive Pigouvian taxes by engaging in some form of tax
repeal has been observed. Boyer et al [2019] in particular have documented that this happened in
the case of the French “Yellow Vests.”

In this case xit represents driving speed, while the intervention ω2 is the inverse of the speed limit.
On July 1, 2018 the French Federal Government lowered the speed limit on secondary highways
from 90 km/h to 80 km/h. The bulk of the impact fell on rural communities where there are
no primary highways and secondary highways are widely used. Let us first observe that on rural
secondary highways social norms regulating driving speed are likely to play an important role.
Although driving is to an extent anonymous, drivers who are perceived to drive excessively fast
are often punished, for example, by blocking their progress by intentionally slowing down, making
it difficult to pass, or simply through obscene gestures. While fictional, the Damián Szifron film
“Relatos Salvajes” illustrates the idea well. As drivers observe one another well, we may hypothesize
that θ is relatively low. Two other facts are relevant. First, α < 1: the speed camera revenue is
not returned to rural drivers who receive only an indirect benefit. Second F was quite low due to
the advent of social media. Indeed we know that Facebook played a key role in the organization
of rural communities. Hence our theory says that if the group could do so at low cost it would
organize not only a new driving speed norm, but also a lowering of taxes.

Although it is perhaps less well known than the more publicized riots in Paris, the group did
indeed act to “repeal” the tax. The rate of traffic camera destruction jumped by 400% and in the
year following the speed limit change about 75% of all traffic cameras in France were destroyed. We
refer the interested reader to Boyer et al (2019) who document both the link between the change
in speed limit and the yellow vest movement, as well as the systematic way in which that group
organized itself.
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There are several points to make on this case. First, it is not true in this model that taxes are
generally rejected. As Theorem 5 shows even with α < 1 the group will often prefer a positive
tax rate to partially substitute even for relatively inexpensive monitoring. Second, setting the
Pigouvian tax - the usual policy prescription - is a mistake when α < 1 for two reasons. First,
if a new social norm is introduced output will be too low. Second, it creates an incentive for the
group to attempt to (partially) repeal the tax. All of this emphasizes that a credible commitment
to α = 1 is highly desirable for implementing Pigouvian taxes.

7. Conclusion

The main contention of this paper is that the role of social norms in enforcing pro-social behavior
should not be neglected. To take one of many examples consider the field experiment of Gneezy
and List (2006) in which they paid some solicitors a fixed bonus above the market wage and others
not. They discovered that initially those with the bonus increased their effort, but over the entire
course of the experiment did about the same amount of work per unit of pay as those without the
bonus. This is consistent with a social norm in which the wages per unit of effort are part of a
social norm: solicitors do the amount of work per pay as called for by the social norm regardless
of whether the money is paid as a piece rate or a lump sum.

The social norms we have studied are optimally chosen by the group, that is they are endogenous.
An instructive example of the endogeneity and adaptability of social norms is the custom of tipping
service providers: this is commonplace in the US and UK, but rare, for example, in Italy. In Italy
it works rather the other way around: not only is there no tipping but repeat customers get a
discount - kind of a negative tip. In the US and UK there is a definite social sanction for not
tipping. Other people at your table as well as the waiters may sneer at you - indeed you may be
explicitly told not to return. We would argue that these are not just arbitrary customs, but rather
are based on the need for incentives. With low waiter turn-over both within restaurants and within
communities social norms among waiters can support good service and tipping is not needed - this
is the situation in Italy. With high waiter turn-over and waiters not tied to the local community it
is difficult for social norms to support good service, and so tipping is a needed incentive.

Changing social norms is costly: they adjust slowly when incentives are weak - for example,
the twelve years debate leading up to the change from driving on the left to the right in Sweden -
and rapidly when incentives are strong - for example, only few hours after the attack on the World
Trade Center on 9/11 the social norm of never resist hijackers changed permanently to always
resist hijackers.15 This is strongly suggestive of adjustment costs. Here we have examined how
endogenous social norms modeled through mechanism design subject to adjustment costs interact
with external policies.

Our analysis includes a number of findings that should be cautionary. Increases in taxes designed
to decrease an externality may increase it - but never-the-less increase welfare. The impact of these

15See Levine (2012) for a discussion of both.
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taxes on behavior can depend upon how the revenue is spent. The ability of groups to self-organize
through social media can play a significant role in determining the consequences of interventions.
These observations and analysis need to be considered in a number of economic areas. In blood
donations the type of trade-off between voluntary and paid contributions, studied for example by
Meyer and Tripodi (2017), should be viewed in light of our findings. Much the same can be said
about environmental issues. Peer pressure within certain groups to be “green” is significant - the
sorting of garbage, for example, cannot easily be enforced otherwise. To develop useful policies it
is necessary to know how external incentives complement and substitute with internal incentives.
This paper is a step in that direction.
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Appendix: Proofs

Outline of the ideas

There are four key ideas about the utility function that we need

1. concavity in own action: so that best responses are unique

2. concavity overall: so that the optimization problem without monitoring costs is well-behaved

3. direction in which the externality effects utility and marginal utility

4. direction in which the type effects utility and marginal utility

5. a technical assumption (the one on third derivatives): this is to make sure that the monitoring
cost does not cause a non-convexity

There are several preliminary steps needed

1. establish the uniqueness and properties of best responses

2. establish that the downward constraint does not bind

3. establish a formula for the least monitoring cost

The basic idea in all parts is to establish with respect to “stronger” interventions that

1. for the simple norm initially nothing changes, then output declines

2. for the default and contingent social norm output declines: the former is “easy” the latter is
“hard”

The basic result is: as intervention increases initially nothing changes then depending on whether
F is large or small output jumps either up or down, then eventually decreases to a level lower than
without intervention.

Summary of Assumptions

We start by listing the assumptions used in the text. Then a proof is given of the basic
characterization of the mechanism design problem. Next the central results of the paper are proved.
Finally we check that the assumptions are satisfied in the two applications (Pigou and Cournot)
we cover in the text.

We recall that the individual utility u(ωi, xt, x
i
t) is assumed to be smooth throughout, and that

there is an upper bound on the possible interventions: ω1 ≤ ωi < ω. The assumptions are listed in
the following table:
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List of Assumptions
Basic Results:

1 Strict differentiable concavity in xit: D33u(ωi, xt, x
i
t) < 0

2 Lower boundary: D3u(ωi, xt, 0) ≥ 0

3 Upper boundary: D3u(ωi, xt, X) ≤ 0

4 Externality is negative: D2u(ωi, xt, x
i
t) ≥ 0 and xit > 0 ⇒D3u(ωk, xt, xt) > 0

4a Externality is negative: D2u(ωi, xt, x
i
t) < 0 for xit > 0

5 Externality is negative: D32u(ωi, xt, x
i
t) ≤ 0

6 Higher types have less incentive to deviate: D31u(ωi, xt, x
i
t) < 0

One type:
7 u(ωi, xt, xt) strictly differentiably concave in xt
8 Lower boundary: D2u(ωi, 0, 0) +D3u(ωi, 0, 0) > 0

9 Higher types have lower benefit from production:
D21u(ωi, xt, xt) +D31u(ωi, xt, xt) ≤ 0

10 D223u(ωj , xt, x
i
t) ≥ 0

11 D123u(ωj , xt, x
i
t) ≥ 0

12 Possibility of large interventions:
D2u(ω1, xt, xt) +D3u(ω1, xt, xt) < 0⇒ D3u(ω, xt, xt) < 0

For each part the assumptions pertaining the earlier parts are maintained. As we mentioned
in the text, by strict differentiable concavity we mean that the Hessian matrix is negative definite
(which is sufficient but not necessary for strict concavity).

Basic Results

For our basic results we allow types ωi to vary by individual. Recall that for any type ωi and
average output x the maximizer of u(ωi, x, xi) is denoted by xb(ωi, x).

Proposition 1. There is a unique best response xb(ωi, x), it is weakly interior, smooth and de-
creasing, and strictly decreasing in ωi with, for h = 1, 2

Dhx
b(ωi, x) = −

(
D33u(ωi, x, xb(ωi, x))

)−1
D3hu(ωi, x, xb(ωi, x)).

Proof. The derivative of own utility with respect to own action is

D3u(ωi, x, xi).

From the concavity #1 and boundary conditions #2, #3 this has a unique zero at xb(ωi, x):

D3u(ωi, x, xb(ωi, x)) = 0.
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The inverse function theorem for h = 1, 2 then gives Dhx
b(ωi, x) as in the statement. For h = 1

that expression is negative from #1 and #6, for h = 2 it is non-positive from #1 and #5.

Theorem 6. The default social norm yd(ω2) is well-defined, weakly interior, smooth and yd(ω2) is
strictly decreasing.

Proof. From Proposition 1 f(xt) = xb(ω2, xt) is continuous and decreasing in xt ∈ [0, X]. This im-
plies the existence of a unique fixed point in xt denoted yd(ω2). As f(xt)−xt is smooth with strictly
negative derivatives we may apply the implicit function theorem to conclude that yd(ω2) is smooth
and strictly decreasing. From Proposition 1, this implies in turn that ydj (ω2) = xb(ωj , y

d(ω2)) is
smooth and weakly interior.

The General Problem

The remainder of the section will consider the general problem of choosing a scheme of individual
quotas yi, individual output levels xi and individual punishments P i to maximize the objective
function ∫ [

u(ωi,

∫
xidi, xi)− 1[xi > yi]π1P

i − 1[xi ≤ yi]πP i
]
di

subject to individuals making optimal choices of xi given the quotas and punishments

xi ∈ arg maxu(ωi,

∫
xidi, xi)− 1[xi > yi](π1 − π)P i.

Our goal is to prove

Proposition 2. A scheme yi, xi, P i is optimal if and only if for y =
∫
yidi

(i) for almost all i we have xi = yi = y(ωi)

(ii) y(ωi) is a solution to

max

∫ (
u(ωi, y, y(ωi))− θ

[
u(ωi, y, xb(ωi, y))− u(ωi, y, y(ωi))

])
di

(iii) P i = (u(ωi, y, xb(ωi, y)− u(ωi, y, y(ωi))/(π1 − π).

(iv) The solution satisfies
(a) y(ωi) < xb(ωi, y) if y(ωi) > 0

(b) 0 < y < yd.

We will do this in two steps. First we will show that the result holds if it is possible to
costlessly impose downward quotas; then we will show that quotas yi, individual output levels xi

and punishments P i solve that problem if and only if they solve the problem without downward
quotas - that is, we will show that at the solution to the problem with costless downward quotas
the downward quotas do not bind. The argument is articulated in Lemmas 1 to 6.
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Lemma 1. With costless downward quotas the general problem is equivalent to the problem of
choosing quotas yi and punishments P i to maximize∫ [

u(ωi, y, yi)− πP i
]
di

subject to
1[xb(ωi, y) ≥ y(ωi)]

(
u(ωi, y, xb(ωi, y))− u(ωi, y, yi)

)
≤ (π1 − π)P i.

Proof. From the revelation principle we can assume that xi = yi subject to incentive compatibility.
Deviating downwards is not feasible, hence incentive compatibility requires that the maximum gain
from deviating upwards be less than or equal to the cost of punishment times the increased chance
of punishment and this is what the constraint states. As the quota is not violated the punishment
P i has an expected cost of πP i.

Lemma 2. With costless downward quotas the general problem is equivalent to the problem of
choosing quotas yi to solve

max

∫ (
u(ωi, y, yi)− 1[yi ≤ xb(ωi, y)]θ

[
u(ωi, y, xb(ωi, y))− u(ωi, y, yi)

])
di

where y =
∫
yidi.

Proof. For given quotas yi punishment cost P i must be minimized, so the incentive constraint must
hold with equality. Plugging in from Lemma 1 gives the result.

To prove Proposition 2 with costless downward quotas, it suffices to show that optimal quotas
depend only on type.

Lemma 3. With costless downward quotas an optimal quota scheme has yi = y(ωi) for almost all
i.

Proof. Consider the problem defined in Lemma 2 of maximizing∫ (
u(ωi, y, yi)− 1[yi ≤ xb(ωi, y)]θ

[
u(ωi, y, xb(ωi, y))− u(ωi, y, yi)

])
di.

subject to average output being fixed,
∫
yidi = y. The objective function is additively separable

in yi. Each component to the left of xb(ωi, y) is strictly concave by #1 and similarly to the right.
Moreover, the function is maximized at xb(ωi, y) so in fact it is continuously differentiable and
strictly concave. As we have a strictly concave objective function subject to a linear constraint, the
solution is characterized by a Lagrange multiplier λ (of indeterminate sign) and the independent
problems of maximizing

u(ωi, y, yi)− 1[yi ≤ xb(ωi, y)]θ
[
u(ωi, y, xb(ωi, y))− u(ωi, y, yi)

]
− λyi.
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Since the problem is strictly concave it has a unique solution - and that depends only on ωi, λ and
y.

To prove the full version of Proposition 2 we need to show that in the solution to the costless
downward quota problem the downward quotas do not bind. We next show that it is also the case
that the upwards constraints, on the contrary, do bind. This latter fact proves part (a) of the final
assertion of the theorem.

Lemma 4. Under #4a with costless downward quotas at the optimum the downward constraints
do not bind and the upwards constraints strictly bind for y(ωi) > 0. Under #4 this is also true
provided there is only one type.

Proof. The downward constraints do bind when xb(ωi, y) < y(ωi) and y(ωi) > 0. The upward
constraints strictly bind when xb(ωi, y) > y(ωi) or y(ωi) = X and D3u(ωi, y,X) > 0. The latter,
however, violates the boundary constraint #3. We wish to rule out the cases where downward
constraints bind or the upward ones do not, that is we have to rule out the case xb(ωi, y) ≤ y(ωi)

with y(ωi) > 0. Let ID be the set of such i and IU the complement of that set (both measurable
by general continuity considerations). If

∫
ID
di = 0 we are done. If

∫
ID
di = 1 then we may lower

the quotas for all i ∈ ID slightly. For a particular i the objective function is

u(ωi, y, yi)− 1[yi ≤ xb(ωi, y)]θ
[
u(ωi, y, xb(ωi, y))− u(ωi, y, yi)

]
.

If xb(ωi, y) < y(ωi) with y(ωi) > 0 then for a small enough decrease in the quota, we still get
1[yi ≤ xb(ωi, y)] = 0, and so utility changes by

D2u(ωi, y, yi)dy +D3u(ωi, y, yi)dyi.

If instead we had yi = xb(ωi, y) then lowering leads to

D2u(ωi, y, yi)dy +D3u(ωi, y, yi)dyi

− θ
[
D2u(ωi, y, xb(ωi, y))−D2u(ωi, y, yi)

]
dy + θD3u(ωi, y, yi)dyi

=D2u(ωi, y, yi)dy +D3u(ωi, y, yi)dyi

− θ
[
D2u(ωi, y, yi)−D2u(ωi, y, yi)

]
dy + θD3u(ωi, y, yi)dyi.

Finally yi = xb(ωi, y) impliesD3u(ωi, y, yi) = 0 (by interiority) and so we again obtainD2u(ωi, y, yi)dy+

D3u(ωi, y, yi)dyi. In the multiple type case since dy < 0,D2u(ωi, y, yi) < 0 by #4a, andD3u(ωi, y, yi) ≤
0 from xb(ωi, y) ≤ y(ωi) and #1 we see that this is strictly positive, contradicting the supposed
optimality of the quotas. In the single type case by Lemma 3 we may write D2u(ωi, y, y)dy +

D3u(ωi, y, y)dyi. By #4 if D2u(ωi, y, y) ≥ 0 then D3u(ωi, y, y) > 0 contradicting the hypothesis
that xb(ωi, y) ≤ y(ωi) = y. Hence D2u(ωi, y, y)dy +D3u(ωi, y, y)dyi is again strictly positive.

Finally, if 0 <
∫
ID
di < 1 we again lower the quotas for i ∈ ID. As noted in IU we cannot have

yi = X (D3u(ωi, y,X) ≤ 0 so upward constraint cannot bind at X). Hence we may increase the
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quotas for i ∈ IU slightly and we can arrange the increase and decrease so that the average quota
y does not change. Since the average quota did not change (and by the argument above)utility for
a particular i changes by

(1 + 1[i ∈ IU ]θ)D3u(ωi, y, yi)dyi

which is non-negative for i ∈ ID and strictly positive for i ∈ IU . This increase in utility contradicts
the supposed optimality of the quotas.

Lemma 5. At any optimum 0 < y < X.

Proof. If y = X then y(ωi) = X for almost all ωi. From Lemma 4 this implies D3u(ωi, X,X) > 0

contradicting the boundary condition #3. If y = 0 then y(ωi) = 0 for almost all ωi. From Lemma
2 and 4 we must be maximizing

∫ (
u(ωi, y, y(ωi))− θ

[
u(ωi, y, xb(ωi, y))− u(ωi, y, y(ωi))

])
di and

cannot improve utility by choosing y(ωi) = y > 0. Hence the derivative∫ ([
D2u(ωi, 0, 0) +D3u(ωi, 0, 0)

]
+ θD3u(ωi, 0, 0)+

+ θ
[
D2u(ωi, 0, 0)−D2u(ωi, 0, xb(ωi, 0))

])
di

must be non-positive. By #5 D23u(ω2, 0, x
i
t) ≤ 0 the final term is non-negative; the first term is

strictly positive by #8 and the middle term is non-negative by #2. Hence the optimum does not
lie on the lower boundary.

Lemma 6. At any optimum y < yd.

Proof. Suppose instead that y ≥ yd. By Proposition 1 xb(ωi, y) ≤ xb(ωi, yd). By Lemma 5 y > 0

so by Lemma 4 yi < xb(ωi, y) for a positive measure set of i and yi ≤ xb(ωi, y) for all i. Hence
y <

∫
xb(ωi, y)di ≤

∫
xb(ωi, yd)di = yd a contradiction.

One Type: the Central Results

From now on we concentrate on the case where in each period all members have a common type
ωt (as in the text). Recall that if the mechanism designer chooses

(
yit, P

i
t

)
we denote by X

(
yit, P

i
t

)
the set of pure strategy Nash equilibria of the induced game.

Theorem 7. X
(
yit, P

i
t

)
is non-empty and closed.

Proof. Individual utility is u(ωt, xt, x
i
t) − 1(xit ≤ yit)πP

i
t − 1(xit > yit)π1P

i
t . This is not continuous

in xit but as π1 > π it can jump upwards and not downwards so it is upper semi-continuous in xit
as well as yit. This implies that the best response function is upper hemi-continuous as a function
of xt, yit, P it , which has two implications:

1. X
(
yit, P

i
t

)
is closed.

2. the best response correspondence for each member Bi
t(xt) is upper hemi-continuous.
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To prove existence, that is, X
(
yit, P

i
t

)
non-empty, let B(xt) =

∫
Bi
t(xt)di. Since everything is

bounded this is upper hemi-continuous from #2 and the dominated convergence theorem. Hence
we need only prove B(xt) is convex valued to apply Kakutani.

Observe that Bi
t(xt) takes on one of the two values yit, xb(ωt, xit) and is either single valued or

there is indifference with yit < xb(ωt, x
i
t) and

u(ωt, xt, y
i
t)− πP it = u(ωt, xt, x

b(ωt, x
i
t))− π1P it .

Let J denote the set of i which are indifferent and consider a threshold ι in which agents in J with
i > ι play yit and those with i ≤ ι play xb(ωt, xt), while those not in J play their unique best-
response. Let xι be the corresponding average output: clearly xι ∈ B(xt). Moreover x ∈ B(xt)

implies x0 ≤ x ≤ x1. Hence B(xt) = {xι}ι∈[0,1]. Since xι is an increasing continuous function it
follows that {xι}ι∈[0,1] = [x0, x1] which is convex.

Recall that the monitoring cost for the simple social norm is defined as

M ≡ θ
[
u(ω1, y

s, xb(ω1, y
s))− u(ω1, y

s, ys)
]
.

Since ys > 0 Proposition 2 also shows that xb(ω1, y
s) > ys, and by Proposition 1 this implies

that the utility gain u(ys, xb(ω1, y
s))− u(ω1, y

s, ys) is strictly positive and by assumption θ > 0, so
the monitoring difficulty is strictly positive, that is M > 0.

Our assumption that f is “small” can now be stated. We assume specifically that f < M ,
that is, the fixed cost of switching to a default social norm in the second period is less than the
monitoring cost from maintaining the simple social norm.16

Proposition 3. There is a unique contingent social norm yc(ω2) strictly decreasing. Moreover,
D2u(ω2, y

c(ω2), y
c(ω2)) +D3u(ω2, y

c(ω2), y
c(ω2)) < 0.

Proof. From monitoring cost minimization Proposition 2 the objective function with a single type
ω2 is

(1 + θ)u(ω2, y
c, yc)− θu(ω2, y

c, xb(ω2, y
c)).

We are interested in the region where xb(ω2, y
c) ≥ yc. Since by Proposition 1 xb(ω2, y

c) is decreasing
in yc and strictly positive there is a unique value Y ≤ X such that xb(ω2, y

c) ≥ yc if and only if
yc ∈ [0, Y ]. Hence we restrict our analysis to this interval.

From the envelope theorem and Proposition 1 the derivative is

(1 + θ) [D2u(ω2, y
c, yc) +D3u(ω2, y

c, yc)]− θD2u(ω2, y
c, xb(ω2, y

c)).

16Note that if the simple social norm is maintained in the second period in the face of an intervention then the
monitoring cost cannot be lower than M but it could be higher if some members violate the quota.
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The second derivative is then

[D22u(ω2, y
c, yc) + 2D32u(ω2, y

c, yc) +D33u(ω2, y
c, yc)] +

+2θD32u(ω2, y
c, yc) + θD33u(ω2, y

c, yc)

+θ
[
D22u(ω2, y

c, yc)−D22u(ωj , y
c, xb(ω2, y

c))
]

+

−θD23u(ω2, y
c, xb(ω2, y

c))D2x
b(ω2, y

c)

Everything on the first (split) line is non-positive by #7, #5 and #1. In [0, Y ] we have xb(ω2, y
c) ≥

yc and this together with the technical assumption #10 that D223u(ω2, xt, x
i
t) ≥ 0 gives[

D22u(ω2, y
c, yc)−D22u(ω2, y

c, xb(ω2, y
c))
]
≤ 0.

From Proposition 1 D2x
b(ω2, y

c) ≤ 0 so D23u(ω2, y
c, xb(ω2, y

c))D2x
b(ω2, y

c) ≥ 0. Hence we have a
strictly concave optimization problem on the relevant domain [0, Y ]. As for given ω2 the problem
is concave on the relevant domain it is characterized by first order conditions there. Hence we need
only check that the derivative with respect to yc is strictly decreasing in ω2, implying that yc(ω2)

is strictly decreasing. Differentiating

(1 + θ) [D21u(ω2, y
c, yc) +D31u(ω2, y

c, yc)]− θD21u(ω2, y
c, xb(ω2, y

c))+

− θD23u(ω2, y
c, xb(ω2, y

c))D1x
b(ω2, y

c)

and rewriting

[D21u(ω2, y
c, yc) +D31u(ω2, y

c, yc)] + θD31u(ω2, y
c, yc)+

+ θ
[
D21u(ω2, y

c, yc)−D21u(ω2, y
c, xb(ω2, y

c))
]

+

− θD23u(ω2, y
c, xb(ω2, y

c))D1x
b(ω2, y

c).

The first terms is non-positive by #9, the second strictly negative by #6, the third non-positive
by #11 thatD123u(ω2, xt, x

i
t) ≥ 0 and the final one non-positive because D23u(ωi, xt, x

i
t) ≤ 0 (#5)

and from Proposition 1.
As we have showed interiority the first order condition holds with equality

(1 + θ) [D2u(ω2, y
c, yc) +D3u(ω2, y

c, yc)]− θD2u(ω2, y
c, xb(ω2, y

c)) = 0.

If D2u(ω2, y
c, xb(ω2, y

c)) < 0 it follows directly thatD2u(ω2, y
c, yc)+D3u(ω2, y

c, yc) < 0. Otherwise
rewrite the first order condition as

D2u(ω2, y
c, yc) + (1 + θ)D3u(ω2, y

c, yc) + θ
[
D2u(ω2, y

c, yc)−D2u(ω2, y
c, xb(ω2, y

c))
]

= 0.

If D2u(ω2, y
c, xb(ω2, y

c)) ≥ 0 then by #5 (D23u(ω2, y
c, xit) ≤ 0) and yc < xb(ω2, y

c) we have

26



also D2u(ω2, y
c, yc) ≥ 0 and that the expression in square brackets is non-negative; by #4 also

D3u(ω2, y
c, yc) > 0. Therefore the entire LHS is strictly positive, a contradiction.

Proof of the Main Result

The idea of the main result is this. As ω2 increases the simple social norm initially is strictly
best and nothing changes. Output at the default social norm is initially higher than the simple
social norm and declines. As ω2 increases there is a critical value at which output from the default
social norm equals the quota at the simple social norm (this is the ω̂2 below). This is where the
incentive constraints bind with equality at the simple social norm and for higher ω2 output at the
simple social norm will be exactly the same as the default social norm as the constraint no longer
binds. However: at the critical value of ω2 the default social norm is strictly better than the simple
social norm because the simple social norm has positive monitoring cost M and the default social
norm has a fixed cost f < M . Hence there is another and lower critical cutoff for ω2 where there
is indifference between the simple social norm and the default social norm (this will be ω2). For
large enough F so that the contingent social norm is not used this means that at this second lower
critical cutoff we switch from simple to default and output jumps up.

For any positive F and small enough ω2 the simple social norm is always better than the
contingent social norm. However, as F declines the range of ω2 for which this is true declines.
In other words, there is also a critical cutoff ω2(F ) below which the simple social norm is better
than contingent and at least locally above which the contingent social norm is better. For large
F the critical cutoff is “infinite.” As F → 0 this critical cutoff approaches ω1. Hence there is a
critical value of F for which the contingent norm cutoff matches the default social norm cutoff. For
F above this we switch from simple to default and output jumps up. Below this we switch from
simple to contingent and output jumps down (this is why we want output in the contingent norm
decreasing).

If we can also assure that ω2 can be made large enough that the critical cutoff with respect to
the default exists (is not “infinite”) then output eventually has to be less than at ω1. A sufficient
condition is #12: D2u(ω1, xt, xt) + D3u(ω1, xt, xt) < 0 ⇒ D3u(ω, xt, xt) < 0. It says that to
the right of the social optimum (with no monitoring cost) there is an ω2 big enough that it is
individually optimal to move to the left. This means the default must for high enough ω2 hit the
simple social norm (since this has higher output than the social optimum).

Lemma 7. There is a unique value ω̂2 for which yd(ω2) = ys, with ω > ω̂2 > ω1. For ω2 < ω̂2 we
have D3u(ω2, y

s, ys) > 0 and for ω2 > ω̂2 we have D3u(ω2, y
s, ys) < 0.

Proof. From Proposition 3D2(ω1, y
s, ys)+D3(ω1, y

s, ys) < 0 hence by #12 we haveD3u(ω, ys, ys) <

0. Since (Lemma 4) the constraint strictly bindsD3u(ω1, y
s, ys) > 0. From#6 we haveD31u(ω2, y

s, ys) <

0 so the result follows from the intermediate value theorem.

For a given simple social norm, ys, let xs(ω2, y
s) denote average output in a Nash equilibrium

in the second period corresponding to the new intervention ω2.
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Corollary 1. Given the ω̂2 identified in Lemma 7, for ω2 < ω̂2 we have xs(ω2, y
s) = ys, while for

ω2 > ω̂2 we have xs(ω2, y
s) = yd(ω2) < ys.

Proof. Observe first that xs(ω2, y
s) ≤ ys. To see this recall that the expected punishment in the

simple social norm is such that the expected benefit from the best deviation upward is precisely
0. So if we instead had xs(ω2, y

s) > ys then by #5 and #6, any agent would strictly prefer to
produce the quota ys instead of a greater amount, a contradiction. At this point the result follows
directly from Lemma 7, Theorem 6 and the fact that if xs(ω2, y

s) < ys then it must be that
xs(ω2, y

s) = yd(ω2).

Let yo(ω2) denote the social optimum output corresponding to ω2 (which may be the simple
norm, the default or the contingent norm). We recall that the contingent and default norms have
fixed costs respectively of F and 0 ≤ f < F , and that by assumption f < M .

Theorem 8. For ω2 > ω̂2 we have yo(ω2) < ys.

Proof. For ω2 > ω̂2 by Corollary 1 we have xs(ω2, y
s) = yd(ω2). This means it is better to play

yd(ω2) and pay M > 0 than sticking to ys; hence the default social norm is strictly better than the
simple social norm. Hence candidate yo(ω2) are default and contingent. But yc(ω2) < yd(ω2) < ys,
the first by Proposition 2(iv)(b) and the second by Corollary 1. The result follows.

At this point we want to define the threshold ω2 below which the simple norm is better than the
default (as we shall show later it is in fact optimal). To this end denote by V k(ω2) utility excluding
fixed cost for the social norm k ∈ {d, s, c} when there is an intervention. Then define Gjk(ω2) ≡
V j(ω2) − V k(ω2) - which is the gain of j over k excluding fixed cost. Thus for example since the
simple norm has no fixed cost the default norm yields a higher group payoff than simple when
Gds ≥ f . Notice that this inequality is strict at the previously identified ω̂2: there u(ω̂2, y

s, ys) =

V d(ω̂2) so that from V s(ω̂2) = u(ω̂2, y
s, ys)−M we get Gds(ω̂2) = M > f .

From the parametric transversality theorem we may now assume that f is chosen generically so
that on [0, ω] the function Gds(ω2) has non-vanishing derivative at the point(s) ω2 where Gds(ω2) =

f . Hence as transversality implies finitely many crossings we may let ω2 be the smallest solution
of Gds(ω2) ≥ f . Thus for ω2 < ω2 the simple norm is preferred to the default, and for ω2 slightly
larger than ω2 the opposite holds.

Lemma 8. 0 < ω2 < ω̂2.

Proof. At ω1 we have by construction u(ω1, y
s, ys) −M > u(ω1, y

d(ω1), y
d(ω1)) that is V s(ω1) >

V d(ω1) so that Gds(ω1) < 0. Also Gds(ω̂2) = M > 0, so the result follows from the mean value
theorem.

The next lemma implies that below ω2 the simple norm is preferred also to the quota yc(ω2).

Lemma 9. For ω2 < ω̂2 we have V c(ω2)− V s(ω2) strictly increasing.
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Proof. Note that as we change ω2 keeping the simple social norm the punishments remain fixed
despite the reduced incentive to deviate, so the monitoring cost does not change. We compute

V c(ω2)− V s(ω2) =
[
(1 + θ)u(ω2, y

c, yc)− θu(ω2, y
c, xb(ω2, y

c))
]
− [u(ω2, y

s, ys)−M ] .

From the envelope theorem the derivative is

(1 + θ)D1u(ω2, y
c, yc)− θD1u(ω2, y

c, xb(ω2, y
c))−D1u(ω2, y

s, ys).

This may be written as

[D1u(ω2, y
c, yc)−D1u(ω2, y

s, ys)] + θ
[
D1u(ω2, y

c, yc)−D1u(ω2, y
c, xb(ω2, y

c))
]
.

Since D31u(ωi, xt, x
i
t) < 0 by #6 and xb(ω2, y

c)) > yc by 4 the final term is positive. For the first
term, write

D1u(ω2, y
c, yc)−D1u(ω2, y

s, ys) =

∫ yc

ys
[D12u(ω2, y, y) +D13u(ω2, y, y)] dy.

Moreover yc(ω2) strictly decreasing from Proposition 3 implies yc < ys so from #9 this is non-
negative.

Next define F = Gcs(ω2). Thus F makes simple and contingent indifferent where simple is
also indifferent to the default norm; for higher F the simple and default norm are preferred to the
contingent norm (at ω2), for lower F it is the reverse.

Theorem 9 (Pigou, Upward Jump). For F > F there exists ε > 0 such that for
(i) ω2 < ω2 we have yo(ω2) = ys

(ii) ω2 < ω2 < ω2 + ε we have yo(ω2) = yd(ω2) > ys + ε and decreasing in ω2

In addition there is an F+ > F such that
(iii) F > F+ and ω2 > ω2 imply yo(ω2) is decreasing

Proof. For F > F the simple and default norm are preferred to the contingent norm at ω2; below
that simple is better than default by definition and better than contingent by Lemma 9. This
proves (i).

Next we claim that there is an ε so that for ω2 < ω2 < ω2 + ε it is optimal to use the default
social norm. For small enough ε it is strictly sub-optimal to use the contingent social norm. At ω2

we have Gds(ω2) = f so by the generic choice of f we know DGds(ω2) 6= 0. By construction for
0 ≤ ω2 < ω2 we have Gds(ω2) < f so in fact DGds(ω2) > 0. It follows that for ε sufficiently small
it is optimal to use the default social norm. Moreover, since ω2 < ω̂2, yd(ω̂2) = ys (Lemma 7) and
yd(ω2) strictly decreasing (by Theorem 6) it follows that yd(ω2) > ysand consequently this remains
true for ε small enough, proving (ii).
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For (iii) observe that for F sufficiently large it cannot be optimal ever to use yc. Hence the
jump from ys to yd once it occurs remains so for larger ω2.

For f < F < F let ωF2 be the unique solution in [0, ω̂2] of Gcs(ω2) = F . Observe that by
definition Gcs(ω2) = F > f , and by Lemma 9 Gcs(ω2) is strictly increasing; so 0 < ωF2 < ω2, and
in fact to the left of ωF2 the simple norm is better than contingent and to the right the opposite is
true. Also recall that for ω2 < ω2 the simple norm is better than the default norm.

Theorem 10 (Pigou, Downward Jump). For 0 < F < F there exists ε > 0 such that for
(i) 0 ≤ ω2 < ωF2 we have yo(ω2) = ys

(ii) ωF2 < ω2 < ωF2 + ε we have yo(ω2) = yc(ω2) < ys − ε and decreasing in ω2

In addition there is an F− < F such that
(iii) F < F− implies yo(ω2) ≤ ys and for ω2 > ω2 we have yo(ω2) < ys

Proof. For (i) and (ii) we may assume that ω2 < ω2 so it is strictly sub-optimal to use the default
social norm. But as we just observed to the left of ωF2 the simple norm is better than contingent
norm and to the right the opposite is true. So (i) follows directly, and (ii) follows from yc(ω1) = ys

and the fact that yc(ω2) is strictly decreasing (Proposition 3).
For part (iii) observe that at F = f the new social norm yc(ω2) is strictly better than the

default social norm so if we take F− < minω2≤ω2
Gcd(ω2) to the left of ωF2 the simple social norm

is best; in (ωF2 , ω2] the new social norm is best, and in either case we have yo(ω2) ≤ ys . To the
right of ω2 the simple social norm cannot be best, and both the default and new social norm have
less output than ys so indeed yo(ω2) < ys.

Output Limits

The tax is given by τ = ΦΩ(xit,Λ) where Ω is the probability of being caught when minimum
intended output is xit and the limit is Λ. We assume the lowest possible speed limit Λ ≥ X the
highest minimum speed to ensure that Ω ≤ 1.

Suppose that ã is a standard Pareto and that actual output is ãxit. Let 0 < κ ≤ 1 be the
probability of getting caught if in fact the limit is exceeded. Using the fact that the inverse of
a standard Pareto is a standard uniform we may compute the probability of being caught when
intended output is xit as

Ω(xit,Λ) = κPr(ãxit > Λ) = κPr(Λ−1xit > 1/ã) = κΛ−1xit.

Hence τ = κΦΛ−1xit.

Optimal Taxes

In the one-type Pigouvian case define

WP (ω2, α) = (1 + θ)u(ω2, y
c(ω2), y

c(ω2))− θu(ω2, y
c(ω2), x

b(ω2, y
c(ω2))).
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Theorem 11. WP (ω2, 1) is strictly increasing.

Proof. From the envelope theorem the derivative with respect to ω2 is

∂WP (ω2, α)

∂ω2
= D1u(ω2, y

c, yc) + θ
[
D1u(ω2, y

c, yc)−D1u(ω2, y
c, xb(ω2, y

c))
]
,

and applying the Pigouvian functional form this is

∂WP (ω2, α)

∂ω2
= −(1− α)yc + θ

[
xb(ω2, y

c)− yc
]
.

Observe that since xb(ω2, y
c) > yc the final term is strictly positive, so if α = 1 indeed WP (ω2, 1)

is strictly increasing.

Theorem 12. For given θ there exists α < 1 such that for α < α ≤ 1 the optimal tax ω∗2(α)

is unique and smooth with ω∗2(1) the Pigouvian tax. If in addition ((1 + θ)U ′′(x∗)− L′′(x∗))x∗ +

θω∗ < 0 and in particular for θ sufficiently small ω∗2(α) is strictly differentiably increasing in α and
conversely.

Proof. With the Pigouvian functional form we may write

WP (ω2, y
c, α) = (1+θ) (U(yc)− ω2y

c − L(yc) + αω2y
c)−θ

(
U(xb(ω2, y

c))− ω2x
b(ω2, y

c)− L(yc) + αω2y
c
)
,

and noting that for Pigou xb does not depend on xt, we can further simplify this to

WP (ω2, y
c, α) = −(1 + θ − α)ω2y

c + (1 + θ)U(yc)− L(yc)− θ
(
U(xb(ω2))− ω2x

b(ω2)
)
.

We then compute the derivatives. With respect to ω2 we have

D1W
P = −(1 + θ − α)yc + θxb(ω2)− θ

(
U ′(xb(ω2))− ω2

)
∂xb(ω2)/∂ω2

where the last expression is zero by the envelope theorem, so this simplifies to

D1W
P = −(1 + θ − α)yc + θxb(ω2).

From this we may compute second derivatives

D11W
P = θ

∂xb(ω2)

∂ω2
= θ

1

U ′′(xb(ω2))
< 0

the second equality from Proposition 1. We also have, with respect to α,

D13W
P = yc.
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Next, with respect to ycwe have

D2W
P = −(1 + θ − α)ω2 + (1 + θ)U ′(yc)− L′(yc)

D22W
P = (1 + θ)U ′′(yc)− L′′(yc)

D23W
P = ω2 D21W

P = −(1 + θ − α).

Next we consider α = 1 in which case we know that xb = yc = x∗ and ω2 = ω∗ to find

D11W
P = θ/U ′′(x∗)

D22W
P = (1 + θ)U ′′(x∗)− L′′(x∗) < 0

D21W
P = −θ D13W

P = yc D23W
P = ω∗.

From the implicit function theorem we have[
dω2

dyc

]
= −

[
D11W

P D12W
P

D12W
P D22W

P

]−1 [
D13W

P

D23W
P

]
= − 1

∆

[
D22W

P −D12W
P

−D12W
P D11W

P

][
D13W

P

D23W
P

]

where ∆ is the determinant of the matrix. First the determinant:

∆/θ =
1

U ′′(x∗)

[
(1 + θ)U ′′(x∗)− L′′(x∗)

]
− θ = 1− L′′(x∗)

U ′′(x∗)

which is positive. In particular the matrix is negative definite, so there is a unique optimum ω2, y
c.

Finally

dω2 = − 1

∆

[(
(1 + θ)U ′′(x∗)− L′′(x∗)

)
x∗ + θω∗

]
which is positive if and only if

(
(1 + θ)U ′′(x∗)− L′′(x∗)

)
x∗ + θω∗ < 0.

Application Assumptions

To check that assumptions #1 to #12 are verified in the applications it is convenient to list
them by the order of derivative to which they apply. We also give equivalent versions which are
easier to work with, justifying equivalence case by case.
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First derivative assumptions
equivalent

2 D3u(ωi, xt, 0) ≥ 0 D3u(ω, xt, 0) ≥ 0 (by #6)
3 D3u(ωi, xt, X) ≤ 0 D3u(ω1, xt, X) ≤ 0 (by #6)
4 D2u(ωi, xt, x

i
t) ≥ 0 and xit > 0 ⇒D3u(ωk, xt, xt) > 0

8 D2u(ωi, 0, 0) +D3u(ωi, 0, 0) > 0 D2u(ω, 0, 0) +D3u(ω, 0, 0) > 0 (by #9)
12 D2u(ω1, xt, xt) +D3u(ω1, xt, xt) < 0⇒ D3u(ω, xt, xt) < 0

Second derivative assumptions

u(ωi, xt, xt) strictly differentiably concave in xt (which is #7), since first derivative isD2u(ωi, xt, xt)+

D3u(ωi, xt, xt) implies that the following second derivative is negative:

D22u(ωi, xt, xt) + 2D23u(ωi, xt, xt) +D33u(ωi, xt, xt) < 0.

Therefore the second derivatives assumptions are:

1 D33u(ωi, xt, x
i
t) < 0

5 D32u(ωi, xt, x
i
t) ≤ 0

6 D31u(ωi, xt, x
i
t) < 0

7 D22u(ωi, xt, xt) + 2D23u(ωi, xt, xt) +D33u(ωi, xt, xt) < 0

9 D21u(ωi, xt, x
i
t) +D31u(ωi, xt, x

i
t) ≤ 0

Third derivative assumptions

11 D231u(ωj , xt, x
i
t) ≥ 0

10 D232u(ωj , xt, x
i
t) ≥ 0

Pigou

Recall that in our first application we consider a simple negative externality where the inter-
vention is a Pigouvian tax. Effort xit brings an individual benefit U(xit) which is strictly concave
U ′′(xit) < 0 and a social cost L(xit) strictly increasing L′(xt) > 0 and weakly convex L′′(xt) ≥ 0.
The Pigouvian tax is ωixit. A portion of the tax α ∈ [0, 1] is returned to the group as an equally
distributed lump sum, with the remainder going to the outside agency imposing the tax. Therefore

u(ωi, xt, x
i
t) = U(xit)− ωixit − L(xt) + αωixt.

We impose two boundary conditions, the first that the individual marginal benefit is large at the
lower bound in the sense that U ′(0) > L′(0)+ω and the second that the upper bound is sufficiently
large that individual benefit is no longer strictly increasing U ′(X) ≤ 0.

To ensure that there is an adequate range of policy interventions we assume that the initial
marginal Pigouvian tax is not too large in the sense that L′(X) > αω1. In the case where the
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initial ω1 = 0 this is certainly the case, but we allow the possibility that the initial tax is positive,
just not too large.

Under these assumptions Lemma 11 that there is a unique solution x∗ to the group optimization
problem of maximizing u(ω1, xt, xt) that lies in the interior, and that U ′(x∗) > ω meaning that the
initial tax rate ω1 is in fact sufficiently low that at the social optimum individuals would like to
increase effort. Our final assumption is that the highest tax rate is high enough that it becomes
individually optimal to implement x∗, that is, U ′(x∗)−ω = 0. In the case where ω1 corresponds to
no tax and there is a full rebate α = 1, this says that ω is “the” Pigouvian tax. We do not examine
the consequences of setting tax rates higher than this.

Computation of derivatives.
D1u(ωi, xt, x

i
t) = −xit + αxt

D2u(ωi, xt, x
i
t) = −L′(xt) + αωi

D3u(ωi, xt, x
i
t) = U ′(xit)− ωi)

D11u(ωi, xt, x
i
t) = −D11τ(ωi, xit) D12u(ωi, xt, x

i
t) = α D13u(ωi, xt, x

i
t) = −1

D21u(ωi, xt, x
i
t) = α D22u(ωi, xt, x

i
t) = −L′′(xt) D23u(ωi, xt, x

i
t) = 0

D31u(ωi, xt, x
i
t) = −1 D32u(ωi, xt, x

i
t) = 0 D33u(ωi, xt, x

i
t) = U ′′(xit)

The maintained assumptions for the Pigou application (except for the last one which is stated
after Lemma 11) are the following:

L′(xt) > 0

U ′(0) > L′(0) + ω

U ′(X) ≤ 0

L′(X) > ω1

U ′′(xit) < 0, L′′(xt) ≥ 0

Lemma 10. To verify #8 we must show that −L′(0) + U ′(0)− (1− α)ω > 0

Proof. Follows from U ′(0) > L′(0) + ω.

Lemma 11. There is a unique maximizer x∗ of U(xt) − L(xt) − (1 − α)ω1xt, and it is strictly
interior.

Proof. The objective function is concave by assumption with interiority from 10 and the fact that
L′(xt) > 0, U ′(X) ≤ 0 a imply that on the upper boundary −L′(X) + U ′(X)− (1− α)ω1 < 0.

At this point we can state our final assumption: U ′(x∗)− ω = 0.
In the following tables for each assumption we stack the original version and the form it takes

in the application. The last column contains a proof that the assumption is verified (or reference
thereof). First derivative assumptions (using the equivalent formulations given above):
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requirement reason

2 D3u(ω, xt, 0) ≥ 0:
U ′(0)− ω U ′(0) > L′(0) + ω, L′(0) > 0

3 D3u(ω1, xt, X) ≤ 0:
U ′(X)− ω1 ≤ 0 U ′(X) ≤ 0, ω1 ≥ 0

4 D2u(ωi, xt, x
i
t) ≥ 0 and xit > 0 ⇒D3u(ωk, xt, xt) > 0:

−L′(xt) + αωi ≥ 0⇒U ′(xt)− ωi > 0 Lemma 12 below
8 D2u(ω, 0, 0) +D3u(ω, 0, 0) > 0:

−L′(0) + U ′(0)− (1− α)ω > 0 Lemma 10 above
12 D2u(ω1, xt, xt) +D3u(ω1, xt, xt) < 0⇒ D3u(ω, xt, xt) < 0:

−L′(xt) + αω1 + U ′(xt)− ω1 < 0⇒ U ′(xt)− ω < 0 Lemma 13 below

Second derivative assumptions:

requirement reason

1 D33u(ωi, xt, x
i
t) < 0:

U ′′(xit) < 0 assumption
5 D32u(ωi, xt, x

i
t) ≤ 0:

0 ≤ 0 true
6 D31u(ωi, xt, x

i
t) < 0:

−1 < 0 true
7 D22u(ωi, xt, xt) + 2D23u(ωi, xt, xt) +D33u(ωi, xt, xt) < 0:

−L′′(xt) + U ′′(xt) < 0 assumption
9 D21u(ωi, xt, xt) +D31u(ωi, xt, xt) ≤ 0:

α− 1 ≤ 0 α ∈ [0, 1]

Third derivative assumptions:

requirement reason

11 D231u(ωj , xt, x
i
t) ≥ 0:

0 ≥ 0 true
10 D232u(ωj , xt, x

i
t) ≥ 0:

0 ≥ 0 true

Lemma 12. To verify #4 we must show that −L′(xt) + αωi ≥ 0⇒ U ′(xt)− ωi > 0.

Proof. First we show that the hypothesis - which we re-write as L′(xt) − αωi ≤ 0 - implies that
xt < x∗. Recall that U ′(x∗) − ω1 − L′(x∗) + αω1 = 0; then ω1 < ω we get L′(x∗) − αω1) =

U ′(x∗)− ω1 > U ′(x∗)− ω = 0. Since by assumption L′′(xt)) ≥ 0, the hypothesis L′(xt)− αωi) ≤ 0

implies xt < x∗.
Assume then that xt < x∗. From U ′(x∗)−ωi ≥ 0 and U ′′(xt) < 0 we draw the desired conclusion

that U ′(xt)− ωi > 0.
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Lemma 13. To verify #12 we must show that

−L′(xt) + αD2τ(ω1, xt) + U ′(xt)− ω1 < 0⇒ U ′(xt)− ω < 0

Proof. The contrapositive is U ′(xt)−ω ≥ 0⇒−L′(xt)+αω1 +U ′(xt)−ω1 ≥ 0. First the hypothesis
implies xt ≤ x∗. Indeed, from U ′(x∗)−ω = 0 and U ′′(xt) < 0 the hypothesis U ′(xt)−ω ≥ 0 implies
that xt ≤ x∗.

On the other hand −L′(x∗) + αω1 + U ′(x∗) − ω1 = 0 (−L′′(xt) + U ′′(xt) < 0) show that for
xt ≤ x∗ we have −L′(xt) + αω1 + U ′(xt)− ω1 ≥ 0.

Cournot

Recall that in the cartel application we have u(ωi, xt, x
i
t) = p(xt)x

i
t− c(ωi, xit), and that revenue

is r(xt) ≡ p(xt)xt. Price is positive, strictly downwards sloping, convex and marginal revenue is
strictly downwards sloping. Marginal cost D2c is positive, strictly upwards sloping and strictly
increasing in ω2. The capacity constraint is xit ≤ X. The highest type ω is willing to enter at
the lowest price p(X) and the lowest type ω1 is not willing to produce to capacity at the highest
possible price p(0). Under these assumptions at ω1 there is a unique level of monopoly output xm

- maximizing r(xt) − c(ω1, xt) - which is interior (Lemma 14 below), and we assume that at the
monopoly level of output corresponding to ω1 the marginal cost for highest type ω is higher than
the monopoly price. In summary the list of assumptions for this case is:

p(xt) > 0

p′(xt) < 0

p′′(xt) ≥ 0

r′′(xt) < 0

D2c(ω
i, xit) > 0

D22c(ω
i, xit) > 0

D21c(ω
i, xit) > 0

p(X)−D2c(ω, 0) ≥ 0

p(0)−D2c(ω1, X) ≤ 0

p(xm)−D2c(ω, x
m) < 0

We compute as before first and second derivatives:

D1u(ωi, xt, x
i
t) = −D1c(ω

i, xit)

D2u(ωi, xt, x
i
t) = p′(xt)x

i
t

D3u(ωi, xt, x
i
t) = p(xt)−D2c(ω

i, xit)

D11u(ωi, xt, x
i
t) = −D12c(ω

i, xit) D12u(ωi, xt, x
i
t) = 0 D13u(ωi, xt, x

i
t) = −D12c(ω

i, xit)

D21u(ωi, xt, x
i
t) = 0 D22u(ωi, xt, x

i
t) = p′′(xt)x

i
t D23u(ωi, xt, x

i
t) = p′(xt)

D31u(ωi, xt, x
i
t) = −D21c(ω

i, xit) D32u(ωi, xt, x
i
t) = p′(xt) D33u(ωi, xt, x

i
t) = −D22c(ω

i, xit)

First derivative assumptions
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requirement reason

2 D3u(ωi, xt, 0) ≥ 0:
p(xt)−D2c(ω

i, 0) ≥ 0 assumption plus p′(xt) < 0 and D21c(ω
i, xit) > 0

3 D3u(ωi, xt, X) ≤ 0:
p(xt)−D2c(ω

i, X) ≤ 0 assumption plus p′(xt) < 0 and D22c(ω
i, xit) > 0

4a D2u(ωi, xt, x
i
t) < 0 for xit > 0:

p′(xt)x
i
t < 0 for xit > 0 p′(xt) < 0

8 D2u(ωi, 0, 0) +D3u(ωi, 0, 0) > 0:
p(0)−D2c(ω

i, 0) > 0 from p(xt)−D2c(ω, 0) ≥ 0 for xt = X and
p′(xt) < 0 and D21c(ω

i, xit) > 0

12 D2u(ω1, xt, xt) +D3u(ω1, xt, xt) < 0⇒ D3u(ω, xt, xt) < 0:
p′(xt)xt + p(xt)−D2c(ω1, xt) < 0

⇒ p(xt)−D2c(ω, xt) < 0

Lemma 15 below

Second derivative assumptions

requirement reason

1 D33u(ωi, xt, x
i
t) < 0:

−D22c(ω
i, xit) < 0 assumption

5 D32u(ωi, xt, x
i
t) ≤ 0:

p′(xt) ≤ 0 assumption
6 D31u(ωi, xt, x

i
t) < 0:

−D21c(ω
i, xit) < 0 assumption

7 D22u(ωi, xt, xt) + 2D23u(ωi, xt, xt) +D33u(ωi, xt, xt) < 0:
p′′(xt)xt + 2p′(xt)−D22c(ω

i, xt) < 0 equivalent to r′′(xt) < 0

9 D21u(ωi, xt, xt) +D31u(ωi, xt, xt) ≤ 0:
−D21c(ω

i, xt) ≤ 0 assumption

Third derivative assumptions

requirement reason

11 D231u(ωj , xt, x
i
t) ≥ 0:

0 ≥ 0 true
10 D232u(ωj , xt, x

i
t) ≥ 0:

p′′(xt) ≥ 0 assumption

Lemma 14. xm, the solution to maximizing r(xt)− c(ω1, xt), is unique and interior

Proof. The second derivative is r′′(xt) − D22c(ω1, xt) which is negative from r′′(xt) < 0 and
D22c(ω

i, xit) > 0 so the solution is unique. The derivative is

p′(xt)xt + p(xt)−D2c(ω1, xt).

From p(X) −D2c(ω, 0) ≥ 0, p′(xt) < 0 and D21c(ω
i, xit) > 0 we have p(0) −D2c(ω1, 0) > 0 so the

solution does not lie on the lower boundary. One the upper boundary p(0) −D2c(ω1, X) ≤ 0 and
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p′(xt) < 0 imply p(X)−D2c(ω1, X) < 0, and p′(xt) < 0 implies

p′(X)X + p(X)−D2c(ω1, X) < p(X)−D2c(ω1, X).

Lemma 15. p′(xt)xt + p(xt)−D2c(ω1, xt) < 0⇒ p(xt)−D2c(ω, xt) < 0

Proof. We may write this as r′(xt) − D2c(ω1, xt) < 0 ⇒ p(xt) − D2c(ω, xt) < 0. Since r′(xm) −
D2c(ω1, x

m) = 0 and r′′(xt) < 0, D22c(ω
i, xit) > 0 the condition is satisfied if and only if xt > xm.

By assumption p(xm)−D2c(ω, x
m) < 0 and from p′(xt) < 0, D22c(ω

i, xit) > 0 the result follows.
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