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Abstract: We examine self-referential games in which there is a chance of understanding 

an opponent’s intentions. Our main focus is on the interaction of two sources of 

information about opponents’ play: direct observation of the opponent’s code-of-conduct, 

and indirect observation of the opponent’s play in a repeated setting. Using both sources 

of information we are able to prove a “folk-like” theorem for repeated self-referential 

games with private information. This theorem holds even when both sources of 

information are weak. 
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1. Introduction 

The theory of repeated games has made enormous strides in penetrating the 

difficult but relevant setting in which players observe noisy signals of each other’s play.3 

Unfortunately as our knowledge of equilibria in these games has expanded there is an 

increasing sense that the types of equilibria studied – involving as they do elaborately 

calibrated indifference – are difficult for players to play and unlikely to be observed in 

practice. By way of contrast, if we give up on the notion of exact optimization, the theory 

of approximate equilibria in repeated games is simpler, more appealing and generally 

more satisfactory than the theory of exact equilibrium. However, it is difficult to 

rationalize, for example, why a player who is aware that he has been lucky and his 

opponent has very favorable signals about his behavior, does not take advantage of this 

knowledge to behave badly. Unfortunately it is exactly this type of small gain that 

approximate equilibrium constructions are based on. Similarly, in mechanism design, it is 

often possible to base mechanisms on having players report on each other. However, 

since equilibria must be crafted so that players are indifferent between their reports it is 

hard to understand why these mechanisms would be robust, for example, to situations 

where players might have social preferences. 

It is also the case that the abstract world of repeated games and mechanism design 

is not very like the world we inhabit. It is a world in which poker is a dull game because 

players can never guess that their opponent is bluffing from the expression on his face. It 

is a world that is would be surprising to skilled interrogators who by asking a few pointed 

questions can tell whether a suspect is lying or telling the truth. 

A class of games in which players have at least a chance of fathoming each 

other’s intentions – whether through facial expressions or skilled interrogation – was 

introduced in Levine and Pesendorfer [2007]. They were primarily interested in these 

self-referential games as a simple alternative to repeated games that exhibit many of the 

same features. For example they showed that in a two player symmetric setting if players 

can accurately determine whether or not their opponent is using the same strategy as they 

are then a type of folk theorem holds. The simple structure of static self-referential games 

made it possible to answer questions about which of many equilibria have long-run 

                                                
3 See for example Sugaya [2011]. 
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stability properties in an evolutionary setting. These questions were impractical to study 

in repeated games. 

The notion of self-referential strategies has a long history of discovery and 

rediscovery. The earliest notion we are aware of appears in Howard [1988] who discusses 

computer programs that play each other based on reading each others code, and example 

of self-referentiality we discuss below. In the context of two-player games, Kalai et al. 

[2010] developed conditional devices that play on behalf of players and condition on 

their opponent’s conditional device. Using these conditional devices as a source of 

commitment they proved a folk theorem. Bachi et al. [2011] presents a model in which 

players decide how much information to costly reveal about their intentions between two 

types of strategies – a regular strategy and a deception strategy. Because of this cost, in 

their folk theorem players choose to reveal their intentions perfectly. As with the case of 

Levine and Pesendorfer [2007] these are restricted to two player games. In addition, 

Kalai et al. [2010] and Bachi et al. [2011] do not consider noisy signals: our focus here is 

on games with arbitrary number of players and noisy – indeed very noisy – signals.  

 This paper views direct observation of opponents’ intentions and repetition of a 

game as complements rather than substitutes. In the situation in which direct observation 

reveals a lot of information about opponent’s intentions naturally one would expect to 

deter deviation more easily. Of greater interest, perhaps, is more limited ability to observe 

directly. We examine two cases: first direct observability is accurate but the ability 

belongs to a small group of players in the game. Here we study the transmission of 

information from this group to other players required to implement punishments. Second 

we consider the case where direct observation is unreliable. Never-the-less it may be 

enough to overcome the small  ’s that arise when simple repeated game strategies are 

employed. When noisy direct observation satisfies some characteristics, our results say 

that players would not deviate from the equilibrium strategy in order to get small gains as 

long as there exists a relatively small probability of being caught and consequently of 

losing a larger amount. 

 The basic setup here is the Levine-Pesendorfer [2007] model generalized to allow 

for asymmetries. It utilizes the notion that players employ codes of conduct – complete 

specifications of how they and their opponents “should” play. Players also receive signals 

about what code of conduct their opponent may be using, while their own code of 
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conduct enables them to respond to these signals. In other words, codes of conduct both 

generate signals and respond to those same signals. This is the “self-referential” nature of 

the games studied here. One key question addressed in this paper is how and when such 

self-referential codes of conduct make sense. 

An effective code of conduct rewards players for using the same code of conduct, 

and punishes them for using a different code of conduct.  Several examples explore such 

issues as when players in a repeated setting might get information about the past play of 

new partners from other players. Results of Levine and Pesendorfer [2007] about perfect 

discrimination are generalized to the asymmetric setting. General results about when 

approximate equilibria in a base game can be sustained as strict equilibria in the 

corresponding self-referential game are given. As an application a discounted strict Nash 

folk-like theorem for enforceable mutually punishable payoffs in repeated games with 

private information is proven despite very limited ability to observe directly. 

2. The Model 

We consider an N  person base game with players {1, , }i I N   . Player i  

has finitely many strategies i is S . Note that we do not allow randomizations over iS . 

That is not the same as saying that there are no mixed strategies, just that there are only a 

finite number of them: for example, only a six-sided dice is available. This assumption 

avoids inconvenient measure theoretic considerations. Since continuous measurement 

devices are an abstraction not available in practice it is empirically relevant, nor will we 

need the computational advantages of convexity for our results. Notice also that we 

assume implicitly either a finite horizon, or a very small subset of strategies in an infinite 

horizon – for example, finite automata with an upper bound on the number of states. 

Again, this is empirically relevant, and as we will be able to establish finite folk-

theorems, there is no reason for the additional mathematical complexity of allowing an 

infinite strategy space. We denote by 
1

N

ii
Ss S


    the corresponding profile of 

strategies. Utility of player i  is given by the payoff function :iu S    where ( )iu s  if 

the strategy profile s  is chosen and with the usual notation ( , )i j ju s s  where js  denotes 

the strategy profile of all players but player j . 

The self-referential game is defined by a finite common abstract space of codes of 

conduct 0R  for each player, by a finite set of private signals iY  for each player, and a 
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fixed exogenously given probability distribution ( | )y r  where 01

N

i
Rr R


    is a 

profile of codes-of-conduct and 
1

N

ii
Yy Y


    is a profile of signals.4 That is, 

( | )y r  is a joint distribution over profiles of signals given the profile of codes-of-

conduct. A code-of-conduct 0
ir R  for player i  also induces a map :i

j j jr Y S  for 

every player j . Formally, the space of codes of conduct is defined as the following set 

1 10 { | : }N N

j jj j

i i Y SR r r
 

   . If every profile of maps :i
j j jr Y S  is 

represented in 0R  we say the code-of-conduct is complete.5 Notice that codes of conduct 

play two roles. First, they determine how players play as a function of the signals they 

receive: that is, a player who has chosen the code-of-conduct ir  and who observes the 

signal iy  plays ( )i
i ir y . Second, codes-of-conduct influence the signals jy  players receive 

about each others’ intentions through the probability distribution. We illustrate these 

implications in the examples below. 

In the self-referential game players simultaneously choose codes of conduct 

0
ir R . If the profile of codes of conduct is r  the corresponding expected utility of 

player i  is  

 1
1 1( ) ( | ) ( ( ), , ( ))N

i i N Ny Y
U r y r u r y r y


   . 

A Nash equilibrium of the self-referential game is a profile of code-of-conduct r̂  

such that for all i  and all ir , ˆ ˆ ˆ( , ) ( , )i i i i
i iU r r U r r   . We do not consider refinements 

such as subgame perfection or sequentiality for several reasons. First, they are not robust 

(Fudenberg, Kreps and Levine [1988]) nor do they appear to be empirically relevant.6 

Second, we will focus our attention on strict Nash equilibria – which satisfy all the 

standard tie-breaking refinements including all versions of perfection and sequentiality, 

and even much stronger ones such as divinity and strategic stability. 

Once we have defined formally the self-referential game, let us sketch its timing. 

Before playing the base game and observing any signals, players simultaneously choose 

codes of conduct. Afterwards, each player privately observes his signal generated by the 

probability distribution that depends on the profile of code-of-conduct. Finally, players 
                                                
4 This is only of interest if the signal structure has an element of richness (see below for specific 
assumptions). If, say, {1}Y   then we cannot exploit self-referentiality as the signal structure is not 
informative. 
5 It is clear that the cardinality of the space of code-of-conduct in this case (and it is the maximal set) is 
finite. 
6 See for example Binmore et al [2002]. 
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execute their codes of conduct and play the base game. Observe that the notion of code of 

conduct does require some sort of commitment. When choosing a code-of-conduct, 

players commit to adhere to it. Moreover, the probability distribution of signals relies on 

everyone’s choice of code of conduct.  

The idea of codes of conduct works as correlating devices. Roughly, while players 

adhere to a particular code of conduct they indirectly choose a probability distribution 

over the profile of signals that will be used to choose strategies by themselves and their 

opponents. In this sense we might look at code of conduct as correlating device. Despite 

the resemblance between equilibrium code of conduct and correlated equilibrium, as we 

will see, they differ significantly. One reason is that the probability distribution over the 

profile of signals depends on the choice of code-of-conduct profile whereas the 

probability distribution in the correlated equilibrium is independent of whether or not 

each player follows the “recommendation” (i.e. considers the signal). In other words, here 

the probability distribution of private signals when players adhere to a code of conduct 

may be different from the situation in which players follow an alternative code-of-

conduct. On the other hand, the correlated equilibrium gives a probability distribution 

that works for both the equilibrium strategy and any deviation. To put this into 

perspective, consider the canonical example about the traffic light that illustrates the 

concept of correlated equilibrium. The light randomly assigns to each player the 

possibility of stopping and continuing. Given this device players find this 

recommendation profitable – after observing the light there is no incentive to deviate. In 

our model, players do not simply observe the light and decide to stop or to not stop. By 

way of contrast, they first choose to adhere to a set of driving rules, and afterwards 

depending on what they observe in the streets (private signals) they would expect with 

some probability that other drivers when observing the red light will stop. If all players 

agree that red light means “stop,” players are more likely to observe private signals that is 

evidence of this agreement. This is exactly the main conceptual difference between Nash 

equilibrium of the self-referential game and correlated equilibrium. 

 Self-referential games were introduced by Levine and Pesendorfer [2007] in the 

two person symmetric case. The key idea is that in an evolutionary setting it is a great 

advantage for a strategy to be able to “recognize itself.” That is: an evolutionary 

advantage will be derived by altruism towards strategies that are the same as your own, 
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and spite towards those that are not. Before examining more closely the motivation for 

self-referential equilibrium, several examples illustrate the concept. 

3. Examples 

 We will initially consider two player symmetric games with a very simple 

informational process and a common strategy space 1 2S S , the description of the base 

game is completed by the normal form representation below. In this example, the self-

referential game consists of the space of signals {0,1}iY   for each player i , where 0 

may be interpreted as “we are both using the same code of conduct” and 1 may be 

interpreted as “we are both using different codes of conduct.” Specifically, the probability 

distribution of signals profile is exogenously given by 0 1 0 2( | ) ( | ) ( | )y r y r y r    so 

that the signals are independent7, and 0(1 | )r p   if 1 2r r  and 0(1 | )r q p    if 

1 2r r . In other words, if the two players employ different codes of conduct they are 

more likely to receive the signal 1 and they may base their play on whether or not this 

signal is received. The codes of conduct themselves we will take to be all pairs of maps 
1 2( , )r r  where 2 2

1: {0,1}ir S  – the space of code-of-conduct is complete. 

 The specific example we will study is a simple prisoner’s dilemma game, possibly 

repeated. The actions in the stage game are denoted C for cooperate and D for defect, and 

the payoffs are given in the table below. 

 

 C D 

C 5,5 0,6 

D 6,0 1,1 

Example 1: The Prisoner’s Dilemma 

 One equilibrium code-of-conduct is simply to ignore the signal and defect – this is 

a strict Nash equilibrium of the self-referential game exactly as in the non-self-referential 

version of the game. Let us investigate the possibility of sustaining cooperation through 

self-referentiality. In particular, we consider the code of conduct that chooses C if the 

signal 0 is received, and chooses D if the signal 1 is received (this prescribed behavior is 

                                                
7 Notice that even though signals are independent, the probability of each signal still depends on the profile 
of code-of-conduct chosen. 
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for both the player and his opponent), denote this code of conduct r̂ . Using our notation, 

each player i  adheres to the code-of-conduct r̂  where for all players j  

 
if 0,

ˆ ( )
if 1.

ji
j j

j

C y
r y

D y

   
 

If both players adhere to the code-of-conduct r̂ , they both receive an expected 

utility of ˆ( ) 5 4iU r p  . A player who chooses instead to always defect (whereas his 

opponent adheres to the code-of-conduct) gets  ˆ( , ) (1 )6 6 5i i
iU r r q q q       – 

denote deviation from the code ir  – and does worse by always cooperating. As noted 

before these two deviations are exactly codes of conduct, the former chooses the strategy 

D if any signal is observed, and the latter chooses C for both signals. Hence it is strictly 

optimal to adhere to the code of conduct r̂  when (1/5) (4/5)q p   – it is a strict 

Nash equilibrium of the self-referential game. This says, in effect, that the signal must be 

informative enough. This example has an interesting extension to the repeated case. 

Example 2: The Repeated Prisoners Dilemma 

 We now consider the game described above repeated twice without discounting 

and no averaging, so we simply use the sum of payoffs between the two periods. 

Consider first the code of conduct that chooses DD if the signal 1 is received and CC if 

the signal 0 is received for both player and opponent. Since play is not conditioned on 

what the other player does in the first period, the optimal deviation against this code is 

DD, and the analysis is the same as in the one-period case. 

 Next, we wish to examine whether it might nevertheless be possible to have 

cooperation in the two period game when (1/5) (4/5)q p  . For simplicity we 

analyze the case 0p  . We consider the code of conduct that for both players chooses 

DD if the signal 1 is received, and if the signal 0 is received plays C in the first period 

and in the second period plays whatever the other player played in the first period. In 

other words, following the good signal 0 the player plays tit-for-tat, following the bad 

signal 1 the player defects in both periods. If both players adhere to the code of conduct 

they both get ( ) 10iU r  . Call this code-of-conduct r̂ . 

There are two deviations of interest: to defect in both periods, or to cooperate in 

the first period then defect in the second. (Other strategies such as defecting in the first 

period and cooperating in the second period achieve lower utility than these two.) We 
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point out that these deviations do not make use of the signal structure, these are the codes 

of conduct of interest.8 When we consider a deviation from a code-of-conduct, we look at 

one particular player who deviates from the code while his opponent follows it.  

A player who defects in both periods, that is, plays DD, has a 1 q  chance of 

getting 6 in the first period, and a q  chance of getting 1, while he gets 1 in the second 

period for sure (since his opponent plays tit-for-tat). Thus, the expected utility of DD is 
ˆ( , ) (1 )6 1 7 5i i

iU r r q q q       . Since this is less than 10 for any q , it is never 

optimal to play DD given that the opponent follows the code. Next, suppose the deviation 

in which a player who cooperates in the first period and defects in the second, that is, 

plays CD, gets expected payoff ˆ( , ) (1 )5 6 5 11 10i i
iU r r q q q       . From these 

results we can work out that our code-of-conduct r̂  would be chosen over the deviation 

CD when 1/10q  , thus if this condition holds the code of conduct r̂  is a Nash 

equilibrium of the self-referential game. By comparison in the one-period game we 

require 1/5q   so for 1/10 1/5q   we can sustain cooperation in the two period 

game, but not in the one-period game. Notice how the signal complements the repetition: 

by using the signal to provide an incentive to retaliate in period 2 – something that with 

0p   has no cost – a deviator is given incentive to cooperate in the first period, 

reducing the gain to deviation. In this sense, direct observation of opponent’s intentions is 

a complement for repetition. It is worth noting that in the one-period game the probability 

of being caught needs to be 20%, while in the two period game we only require this 

probability to be at least 10%. So, it is fairly clear that we strengthen this complementary 

as more arbitrary periods are considered. By violating the code-of-conduct with the 

intention to deviate in the final period the deviator risks being found out and punished 

when cooperating in the first period. Notice also that the code-of-conduct r̂  is a strict 

Nash equilibrium except in the boundary case when 1/10q  . 

It is interesting also to see what happens in the T  period repeated game with no 

discounting. For simplicity of exposition let us consider the time-average payoff. 

Consider the code of conduct that says that both players should play the grim-strategy on 

the good signal, and always defect on the bad signal. This gives a payoff of ( ) 5iU r  . 

                                                
8 Since the signals are independent, your signal contains no information about what the other player will do. 
When receiving your signal, you do not know any information about your opponent’s signal and hence 
about his choice of strategies. 
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The optimal deviation against this code-of-conduct is to play the grim-strategy until the 

final period, then defect. This gives a payoff of 1 / [(1 )(5 1) ( 1)]T q T q T    .  

Hence it is optimal to adhere to the code-of-conduct when 1/(4 2)q T  . The salient 

fact is that as T    only a very tiny probability of “getting caught” is needed to 

sustain cooperation. 

Example 3: Changing Partners 

Lots of mechanisms and equilibria are possible if we can get third parties to tell 

the truth. In a sense this is easy since third parties are generally indifferent. However, it 

seems a lot to build a society on the idea that indifferent third parties will tell the truth. 

Self-referentiality breaks the tie and makes it strictly optimal to tell the truth.  A simple 

example, based on Kandori’s [1992] work on social norms is the repeated gift-giving 

game of Johnson, Levine and Pesendorfer [2001]. However, while Johnson, Levine and 

Pesendorfer [2001] showed the (exogenous) information system selected to sustain 

equilibrium, they did not show how this information system arises, which self-

referentiality enables us to do. 

Overlapping generations of players who live three periods are randomly matched 

to play a gift-giving game. Young productive players in the first period of life are referred 

to as “givers”, middle-aged unproductive players in the second period of their life are 

referred to as “receivers” and old unproductive players in the third period of their life are 

referred to as “witnesses.” Every period the witnesses die and an equal number of givers 

are born, the givers become receivers and the receivers become witnesses.  Each giver is 

endowed with one indivisible unit of a good, a gift. Only receivers get utility from 

consumption.  

Each period receivers are randomly matched with givers. Once a pair is formed it 

remains intact until one player dies. So when a giver becomes a receiver and is matched 

with a giver, the person who was his previous receiver becomes his witness. This 

structure insures that it is possible for a giver to get information about the past play of his 

receiver from the witness – the key question is whether that information will be provided 

and how it will be used. 

In each match there are three players, one of each type. The giver must decide 

whether or not to give a gift to the receiver. If he does not, both receive a payoff of 0; if 
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he does, he receives a payoff of –1, while the gift is worth 1   to the receiver. 

Witnesses do not give or receive gifts and receive utility zero, but may choose either not 

to report, in which case they receive utility 0 or they may make one of two public 

statements which we refer to as “green” or “red” in which case they receive a utility of 

c . Players maximize their lifetime utility without discounting. The possibility of 

reporting is important givers can use reports from witnesses to extract information about 

receivers’ past behavior and exploit the linkage between generations. It is evident that 

since reporting is costly and witnesses are in the final period of their life, they will never 

choose to report if there is no self-referentiality in the game. We assume instead as we 

did before that the signal structure {0,1}iY   for each player, that these signals are 

independent, and that the probabilities are given by 0( 1 | )y r q    if 1 2r r  and 

0( 1 | )y r p    if 1 2r r  with q p . In the second period of his life, a receiver has 

a red flag, a green flag or nothing. These states can be used to make the gift-giving 

decision by the giver. 

For comparison note that with no self-referentiality whenever the receiver 

participates in a match, there is not much left to do. He already made the decision. On the 

other hand, the giver decides whether to give the gift to his partner or not regardless of 

whether his partner gave it before. He would like to have some sort of “reward” in the 

future if he behaves “nice” (and by reward in this game we mean getting the gift in his 

second period of life). Similarly, the receiver wishes to have a way to tell the giver how 

he behaved in the previous match in order to justify that he deserves the gift, if so.9 Now, 

let us reconsider the game described above. We emphasize that strategies tell how a 

person will play in his entire life, so not only the circumstances under which he will give 

the gift, but also what he will say about the person he met when he is a witness. Hence, if 

for instance part of the code of conduct says “report the truth,” either player adheres to it, 

or there is a chance when he is a giver that the receiver he faces will know that he is 

deviating from this code and is a liar. 

We start our analysis by considering the code of conduct r̂  that says: 

– if you are a giver and observe 1y  , do not give the gift; 

                                                
9 Note that analogously a giver would like to avoid any kind of punishment because of not giving the gift, 
and consequently, the receiver prefers to have a way of punishing such behavior. 
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– if you are a giver and observe 0y  , give to a receiver with a green flag, do 

not give to a receiver with a red flag; 

– report a green flag if you received the gift and had a green flag when old, or if 

you did not receive the gift and had a red flag when old; 

– otherwise report a red flag. 

Note that the receiver ignores the signal about whether the young person has 

adhered to the code of conduct. Following this code of conduct gives a payoff of 

(1 )( 1)p c    if he meets a player with a green flag, and (1 )p c   if he meets a 

player with a red flag. We assume that c  is sufficiently small, that is, 

(1 )( 1)p c   . One way of violating the code of conduct is by not giving a gift to a 

green flag. This is not incentive compatible. Intuitively, this is because it will always be 

reported. It remains to check that reporting the truth is incentive compatible. To do so, let 

us study the situation in which a player follows exactly the code of conduct except that 

when receiver he does not report. Notice that first we are examining another violation of 

our code of conduct, and second that we are considering “not report” as a lie. Note also 

that reporting something different from what the code of conduct requires always yields a 

lower payoff because q p . This gives a payoff of (1 )( 1)q    if he meets a player 

with a green flag and (1 )q   if red flag has been reported in the match. Consequently, 

the receiver finds optimal to report the truth only if / ( 1)q c p   . In other words, 

the signal should be again informative enough.   

Next, we examine different alternatives to the code of conduct. We begin with tit-

for-tat code of conduct whose only variation from the one presented above is: give the 

gift to a player if and only if he has a green flag provided he observed the good signal, 

and report a green flag if and only if player received gift and had a green flag. This code 

of conduct tells giver to give the gift if he observes a green flag and witness to report a 

green flag only if the gift was given. That is, if the giver suspects the receiver on account 

of the bad signal and consequently decides not to give the gift, in the eyes of the tit-for-tat 

code of conduct this is considered an action to be punished. It is important to note that 

players expect to encounter players with a red flag since there is a positive probability of 

not giving the gift, namely, if the bad signal is realized. This says that presumed evidence 

of deviation from the code of conduct will be punished. Moreover, adhering to this code 

of conduct is not a best response to itself because of this positive probability. The idea is 
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that givers will get a red flag whenever the outcome is the bad signal because they are not 

giving the gift and hence are punished. In fact, other players following this code of 

conduct would punish this behavior and therefore it is not an optimal response.  

Alternatively, consider weak code of conduct that is a mild version of our code of 

conduct. Specifically, witness reports a red flag only if he did not receive gift and had a 

green flag, otherwise report a green flag, in addition giver gives to the receiver with a 

green flag only if the good signal is observed. Indeed, even if the giver gives the gift to 

someone with a red flag there is no punishment – the idea here is that you are nice with 

your match whenever you see a good signal. The simplest way to see this code of conduct 

does worse is to suppose that some proportion of the population is adhering to tit-for-tat 

code of conduct. In the case that a giver does not give the gift to the receiver with a red 

flag he would get a red flag if he encounters someone that adheres the tit-for-tat code, 

then he would be punished since he would be reported with a red flag. The key point is 

that the weak code of conduct would have reported this behavior with a green flag and 

consequently it would not have been punished. This is the reason the weak code of 

conduct will not be adhered by players if they are aware of the existence of some people 

following the tit-for-tat code. Notice the subtle difference between the proposed code of 

conduct r̂  and the weak code. Under the code-of-conduct r̂  players have a strict 

incentive to report people who did give the gift to players with a red flag. On the other 

hand, the weak code of conduct does not provide players with strict incentives to do so. 

This means that the code of conduct r̂  will still be adhered by players even in the 

presence of players following the tit-for-tat code. 

4. Are Self-Referential Games Relevant? 

There are three issues to address. First: to what extent is it possible for strategies 

to recognize one another and make use of that information? Second: what is the proper 

extension of self-referential strategies from two player symmetric games to general 

games? Third: does this model capture some aspect of reality? Since there is scarcely 

reason to discuss whether the model captures an aspect of reality if it is impossible to 

implement self-referential strategies, we address each of these issues in turn. 
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Codes of Conduct as Computer Algorithms 

A simple physical model of strategies is to imagine that players play by 

submitting computer programs to play on their behalf. Along the same line, however only 

restricted to the prisoner’s dilemma game, Howard [1988] uses this idea to analyze the 

case in which two computer programs play a prisoner’s dilemma game. Our notion of 

code-of-conduct let us model a more general class of games where players play against 

each other through computer programs (including the prisoner’s dilemma game). The 

idea is the following: Fix a signal space Y  and break the program into two parts, one of 

which generate y  based on analyzing the programs, the other of which maps Y  to S . 

The programs are “self-referential” in the sense that they also receive as input the 

program of the other player. That is, each program takes as input itself and the program 

submitted by the other player. Specifically, we assume that there is a finite language L  

of computer statements, and a finite limit   on the length of a program. The (finite) 

space of computer programs P consists of all sequences in L  of length less than or 

equal to  . Each program ip P  produces outputs which have the form of a map 

: {1,2, , }ip P P S    .10 The interpretation is that 1 2( , ) ( , )i i ip p p s  produces 

the result is  after i  steps. In case i   , the program does not halt. Notice that 

depending on the language L  these programs can be either Turing machines or finite 

state machines. A “self-referential strategy” consists of a pair consisting of a “default 

strategy profile” and a program ( , )i i ir s p , where is S . After players submit their 

program 1 2,p p , each program is given itself and the program submitted by the opposing 

player as inputs. All programs are halted after an upper limit of   steps. If 

( , ) ( , )i i i i ip p p s   and i  , that is, the program halted in time, we then define the 

mapping 1 2( , )i ir p p s , otherwise 1 2( , )i ir p p s .  

To map this to a self-referential game, we take the signal space to be iY S . 

Then ( | ) 1y r   if ( , )i i i
iy r p p  for 1,2i  , and 0 otherwise.  

Kind of example that does not exist: read the other guys program and make a best 

response. Kind of example that does exist: make one response if same and an alternative 

response if different. Must be based on actual code, not on function of program (see 

Levine and Szentes [2006]). 

                                                
10 This analysis can be easily extended to the case that there are more than two players. 
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Definition 4.1: The strategy space S  is self-referential with respect to the deadline   if 

for every pair of actions ,a a  there exists a strategy ( , )s d p S   such that  

 
,  , ,

( , )
, otherwise.

a if d d p p
p d p

a




   

    

 Perhaps the easiest way to provide convincing proof that there are self-referential 

strategy spaces is to provide a simple example of a strategy that satisfies the properties of 

definition 4.1. We consider the trading game with action space {0,1}A  . The default 

action is 0 . The computer language is the Windows command language; the listing is 

given below. 

 

@echo off 

if "0" EQU "%3" goto sameactions 
echo 0 
goto finish 

:sameactions 
echo n | comp %2 %4 
if %errorlevel% EQU 0 goto cooperate 

echo 0 
goto finish 
:cooperate 

echo 1 
:finish 
 

This program runs from the Windows command line, and takes as inputs four 

arguments: a digit describing the “own” default action, a “own” filename, an opponent 

default action and an opponent filename. If the opponent default action is 0, and the 

opponent program is identical to the listing above, the program generates as its final 

output the number 1; otherwise it generates the number 0. The point is, since it has access 

to sequence of its own instructions, it simply compares them to the sequence of 

opponents program instructions to see if they are the same or not. Although in this listing 

all the actual work is done by the “comp” command it is easy enough to write a program 
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that compares two files, and takes a number of steps proportional to the length of the 

shorter file. In other words, the program works in finite, and relatively short time. 

Note that this mechanical procedure is feasible. The idea here is that the computer 

program takes as input the opponent program, reads it line by line and then decides what 

to do. Basically the opponent code is just a list of characters, the computer program 

compares it to itself and checks if they are the same. What do we mean to be the “same?” 

In our setting be the same means using the same language written in exactly the same 

way. 

It is worth mentioning that if both players know in advance they have similar 

abilities then there is no reason to believe that some of them would try to “obscure” their 

program. That is, both players have the same coding technology to check whether codes 

are equal or not it is difficult to commit fraud. However, if one of the players knows that 

the other player has a relatively bounded memory size and is not a skilled programmer 

who will not be able to entirely compare the programs, then it might be beneficial for him 

to exploit this. Consider for example the case of fraud. It demands a lot of skills to 

pretend to be a rich successful businessman who offers you a great investment 

opportunity when in reality nothing could be further from being true. By the same token, 

writing a program that seems to be the same but actually is different requires large 

memory and clever computational skills – it is not costless.  In addition, the use of these 

more complex computer programs may work just as well as secret handshake: they will 

be visible to each other, but not to less sophisticated programs. For example, if a portion 

of a program is not visible to a naïve opponent, a clever programmer could fill it with a 

particular meaningless sequence of code that is never executed but that serves only to 

identify the program to a sophisticated opponent.  

In the face of limitations, we might imagine that rather than writing a program 

that compares the opponent program to itself line by line, it takes sample lines at random 

and compares them to itself. Consequently answers are noisy. Note that there is always a 

chance of detecting a different code, perhaps very small but not negligible. 

People playing games do not often do so by submitting computer programs. From 

an evolutionary perspective, however, genes serve to an important extent as computer 

programs governing how we behave. Modern anthropological research, such as Tooby 

and Cosmides [1996], emphasizes the extent to which social organization is influenced 
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by the ability – and inability – to detect genetic differences using cues ranging from 

appearance to smell.  

From Two Players to Many 

In a two player symmetric game, like the prisoner’s dilemma game above, there is 

a notion of similarity between players. Because of symmetry a player can simply 

compare himself to his opponent and tell whether they both follow the same strategy or 

not. When we extend the environment and allow more players in different roles such a 

simple comparison is no longer possible. Our notion of a code-of-conduct is intended to 

capture what it means to “be the same” in a more general setting.  

In a multiplayer multi-role game a code of conduct may be interpreted as the 

specification of how all players are supposed to play. We emphasize that this definition is 

convenient when we lose symmetry: players can compare themselves to their opponents 

by determining if they have the same expectations for how players in different roles 

(including their own) should play. Applying this interpretation we can characterize two 

players agreeing about how all players should behave as “adhering” to the same code-of-

conduct. The key element of adherence to code of conduct is that players do not only 

agree about how they would behave, but also about how third parties would behave. One 

example that highlights the importance of this extension is the case of interaction 

between individuals and the Government. Clearly, ordinary citizens and politicians play 

different roles and have different set of strategies. However under a state of law, they 

both agree that the ones elected by the majority should make the decisions that affect the 

course of everyone’s actions and that everyone should obey the law. This complex 

environment can be easily captured by our notion of adhering to code-of-conduct.  

Do People Use Self-Referential Strategies? 

 Here is one possible motivatation for this ‘recognition technology.’  Strategies 

govern the behavior of agents over many matches.  Players are committed to a particular 

strategy because it is too costly to change behavior in any particular match.  Suppose a 

player could observe the past interactions of an upcoming opponent. It might be difficult 

on this basis to form an exact prediction of how that opponent would behave during their 

own upcoming match. However, it would be considerably easier to determine if that 
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opponent conformed to a particular rule – for example a player might be able to tell with 

a reasonable degree of reliability whether that opponent was following the same or a 

different strategy than he was employing himself. Moreover, portions of strategies might 

be directly observable. For example, an individual who rarely lies may blush whenever 

he is dishonest. Seeing an opponent blush would indicate that he would be unlikely to be 

dishonest in future interactions. (This example is due to Frank [1987].) 

 As an example, suppose that {0,1}Y   for both players. Further assume that 

( 0 | ', ) 1y s s    if 's s  and ( 1 | ', ) 1y s s    if 's s . Thus, if two players 

meet who use the same strategy then both receive the signal 0 whereas when two players 

meet who use different strategies then both receive the signal 1. In other words, players 

recognize if their opponents use the same or a different strategy prior to play. This 

example is important, because it turns out that strategies that recognize themselves are 

likely to emerge in the long-run equilibrium. 

It bears emphasis that the space of signals is necessarily smaller than the set of 

strategies: the cardinality of the space of strategies is at least Y
A , which is greater than 

that of Y  provided that there are at least two actions.  This relative coarseness of the 

signal space means that it is not possible that a signal could reveal the precise strategy of 

an opponent for every possible strategy profile.   

5. Perfect Information 

 We now focus on the case of perfect information. Throughout this section we 

assume that signals are perfectly revealing. In this setting, players directly observe the 

code-of-conduct chosen by their opponents by receiving these completely reliable 

signals. Notice that we relax the assumption about the relative coarseness of the space of 

signals. 

Let us begin with a static two player game with finite spaces of strategies iS . 

They will simultaneously choose strategies i is S  and get payoff ( )iu s . The self-

referential game consists of a fixed set of signal spaces iY  for 1,2i  , a complete code-

of-conduct space R  and probabilities over profiles of signals given by ( | )y r . To 

analyze this case we assume that there exists a profile of signals with c
i iy Y  such that 

( | ) 1c
i iy r   for 1 2r r , and ( | ) 0c

i iy r   for 1 2r r . This assumption says that 

the signal c
iy  is realized if and only if both players adhere to the same code of conduct. 
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Putting this differently, players are able to perfectly identify those opponents who share 

the same expectations of others’ behavior and they both agree how the two of them 

behave. We define the (possibly mixed) minmax strategy of the base game against player 

i  by i
is
 as the argument of min max ( , )s si i i i iu s s

  . Let ( , )i i
i i i iu u s s
  

 be the smallest 

payoff that his opponent can keep player i  below and i
is

 denote 'i s  best response to i
is
.  

 Our first result in the perfect information case is very similar to the Levine and 

Pesendorfer [2007]: 

Theorem 5.1: For any 1 2( , )i i iv u s s u 


 for all 1,2i   and 1 2( , )s s S , there exists 

a profile of codes of conduct r  such that 1 2( , )v v  is a Nash self-referential equilibrium 

payoff. 

Proof: Let 1 2( , )s s S  with ( )i iu s u


 for 1,2i  . Suppose the code of conduct r  says 

player i  should play is  if c
i iy y , and play i

is
  otherwise. If both players follow this 

code of conduct player i  gets 1 2( ) ( , )i iU r u s s  for 1,2i  . Since any deviation from 

this code-of-conduct will be detected with probability one and punished with the minmax 

strategy, r  is a Nash equilibrium of the self-referential game with payoff iv  for all i . 

 

 We can extend the previous result to the case in which we have more than two 

players. The proof of the next result, which is similar to that of Theorem 5.1, is omitted. 

The intuition of the proof is again to use the idea of a code of conduct that punishes with 

the minmax strategy in case of detecting deviation by one of the players and play the 

prescribed strategy if the signal associated to this strategy is received. 

Theorem 5.2: If ( )i i iv u s u 


 for all players i  and strategy profile s S , then 

1( , , )Nv v  is a Nash equilibrium payoff of the self-referential version of the game.   

We turn now to the case with more than two players but we allow the possibility 

that only some people receive these perfectly revealing signals. Because we relax the 

assumption that everyone sees everything, we need to establish the sense in which a 

player who deviates is detected. 

 We say that the self-referential game permits detection if for every player i  there 

exists some player j  and a set j jY Y  such that for any profile of codes of conduct 

r R , any signal j jy Y  and any i ir r  we have ( | , ) 1j j
i iy r r   . Intuitively, 
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this says that if player i  deviates we can always find another player j  who detects this 

deviation with certainty. 

 The fact that we have a selected pool of people who receives perfectly revealing 

signals raises the issue of what happens if a player from that pool needs some other 

player to punish the deviator. Of course if that player can unilaterally punish the deviator 

there is no problem.  Hence, we first define the notion of this group by saying that a self-

referential game is locally perfectly informative if there exists a proper nonempty subset 

{1, , }kl N   such that all player k ’s contained in that set receive perfect signals.

 In this specification of the self-referential game, there is a possible scenario in 

which one of players who receive the perfectly revealing signal needs some other player 

to punish the deviator. Thus, in order to have the deviator punished this player must have 

some sort of communication device to inform the presence of deviation to the player he 

needs to implement the punishment. To provide this communication we assume cheap 

talk after receiving signals and before play. 

 The game has the following timing. First, players select their code-of-conduct. 

Second, after signals are received, players make announcements on violation of the code-

of-conduct. Finally, players choose their actions and play the base game. 

Formally the model is as follows. Each player adheres to a code of conduct, 

0
ir R  and that induces a probability distribution over profiles of signals given a profile 

of code-of-conduct ( | )y r . After receiving signals, players send cheap talk signals 

defined as announcement taken from a finite set 0iy Y  , and a profile of announcements 

is defined as y Y  . A message from player i  is a map 0:i im Y Y   with message 

profile denoted by m . Players choose actions simultaneously from a finite space, 

i ia A  with action profile a A . The payoff associated to action profile a  is ( )iu a . A 

strategy for player i  is the decision about an action ia  to take and a message im  to send, 

that is, ( , )i i is a m . 

We remark that players respond to such announcements, namely, if player j  

announces player i  has violated the code-of-conduct and this was the only 

announcement, all players play the prescribed action required to implement punishment 

to i . Moreover player i  may try to take advantage of this information structure by 

announcing somebody else has violated the code-of-conduct. However, this does not look 

like a good strategy since he will certainly be detected and consequently punished. On the 
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other hand, there exists the possibility that two players are pointing to each other and it is 

not possible to tell who actually deviated. Hence, we rule out this mutually implication by 

assuming that the self-referential game strongly permits detection meaning that the notion 

of permitting detection is not reciprocal. In words, player j  detects player i , but not vice 

versa. 

 Having stated the model, we prove the next theorem that is in same spirit as the 

previous results. 

Theorem 5.3: If ( )i i iv u a u 


 for all i  and actions profile a , if the self-referential 

version strongly permits detection and is locally perfectly informative, then 1( , , )Nv v  is 

a Nash equilibrium of the self-referential version of the game. 

Proof: Let i
ia
 be the minmax action for player i . Fix an arbitrary profile of actions 

a A  such that ( )i iu a u


 for all i . Given the profile of actions, we begin with 

constructing the code of conduct, r̂ , that implements ( )iu a  for all i . 

 The code of conduct r̂  says for any player j : if he receives the signal jy  and is 

able to unilaterally punish player i , play j
ia


 and send the message jm    (he does not 

send any message). Alternatively, if player j  observes the signal jy  and needs player 

k ’s to punish i , he sends message 0jm y   and plays j
ia


. If he does not receive any 

signal from the set jY  but the message to punish player i , play j
ia


. In any other case, play 

ja . 

 We now proceed to show that this code of conduct implements the payoff 

proposed. With this code of conduct, if players adhere to r̂  their payoffs are 

( ) ( )i iU r u a  for all i  where the profile of messages is the empty set. 

It is seen immediately that not sending the message in case of detecting deviation 

is never chosen since messages are costless and failure to send messages will be punished 

as a violation of the code of conduct. Nevertheless, a possible deviation from this code-

of-conduct is not to play the prescribed action and to announce somebody else has 

deviated. There are two possible cases to consider here. First, player j  announces that a 

player k  who cannot observe 'j s  play has deviated. Since there is some other player l  

points out player j ’s deviation and j  is correspondingly punished j  only loses by 

violating the code of conduct. More interestingly, suppose player j  accuses the player k  

who does observe j ’s play and who accuses j . In this case j  and k  point the finger at 
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each other: one is guilty – but who?  Strong detection enables us to sort this out. 

Detection is unidirectional and everybody knows which way – so everyone knows that 

while k  observes j ’s play, j  does not observe k ’s play, hence it must be j  who is lying 

and who should be punished and obtains ju


. Because of strong detection the deviator will 

suffer the punishment irrespective of his announcement. From this we can conclude that 

the code of conduct r̂  is a Nash equilibrium of the self-referential game. 

 

 In this theorem we require the strong version of “permits detection.” The reason 

for this is simple: if players respond only to unique announcements then a player can foil 

the system by violating the code-of-conduct and announcing also that another player has 

violated it. At worst when he is detected there will be two such announcements. This is a 

fairly common strategy in criminal proceedings: try to obscure guilt by blaming everyone 

else. However if the game strongly permits detection then we can specify that when two 

players announce violations and one points to the other, then the one who has no 

information is punished. Hence if you deviate and are caught you will be punished 

regardless of accusations you might make about others. What strong detection says in a 

sense is that there are “neutral” witnesses – people who observe wrong-doing but who 

cannot be credibly accused of wrong-doing by the wrong-doer.   

The code of conduct constructed in the proof of the last theorem incorporates the 

idea about communicating what other players cannot see using cheap talk signals. Even 

though all players do not receive perfect signals, the existence of messages allows the 

detector to communicate and point out a deviation to the players required to materialize 

the punishment. Recall that in the changing partners’ example, the young generation that 

decides to give or not the gift would be supported (if they follow the code-of-conduct) or 

exposed (if they did not) by their witnesses. Furthermore, witnesses are able to send an 

almost cheap talk signal – the report – to the incoming generation of givers about the 

interaction that they previously perfectly observed. 

 We emphasize that when a player adheres to the code of conduct r̂ , if he receives 

the message that calls for a punishment he is expecting all players involve in it will play 

accordingly. Moreover, the chance of observing a deviation from this code is captured by 

the signals observed after selecting codes of conduct. Clearly this illustrates the notion of 

agreeing about how others should behave that is present in the code of conduct. 
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6. Approximate Equilibria 

 We now ask to what extent a small probability of detecting deviations from a 

code-of-conduct can be used to sustain approximate equilibria of the base game as strict 

equilibria of the self-referential game. 

We assume that in the base game all players have access to N  individual 

randomizing devices each of which has an independent probability 0R   of an 

outcome we call punishment. Since the base game is finite, we can denote by ,u u  be the 

lowest and highest payoffs to any player in the game.  

We assume fixed signal spaces iY , that R  is a complete code-of-conduct, and that 

the signal probabilities are ( | )y r . The self-referential game is said to ,E D  permit 

detection where 1 , 0,1E D E D     if for every player i  there exists a player 

j and a set j jY Y  such that for any profile code of conduct r R , any signal j jy Y , 

and any i ir r  we have ( | , ) ( | )j j j j
i iy r r y r D     and ( | )j jy r E  . We view 

D  as the probability of detection, that is, how likely it is that player j  observes 

intentions of deviating from the other player i . In addition, E  represents an upper bound 

for the probability of false positive. You can think of E  as the probability of someone 

who is being falsely accused of cheating when he behaves honestly.  

We start by supposing that the strategy profile 0s  is a 0 -Nash equilibrium giving 

utility profile 0u  in the base game. Suppose for some strategy profile s  and strategies i
js  

played by player j  for any pair of players , 1, ,i j N   that ( ) ( , )j j j
i is s s  are 1 -Nash 

equilibria satisfying for each player i  that ( )
0( ) ( ) 0j

i
i i iP u s u s P     and for some 

0P   that ( )
0( ) ( )j j j

i
Pu s u s   . The number iP  stands for player 'i s  loss when 

punished and the punishment must be at least P . Think of p  as a measure of the 

closeness of ( )j
is  to 0s , that is, a measure of how far the punishment equilibria are from 

the original equilibrium. Define two parameters   and K   

 0 1( )( ) ,PN u u E         

  4 4max ( ) 3 (1 ) , ( ) 1 ( )K N u u N u u N N u u u u                 . 

Observe that K  depends only on the number of players in the game, and the 

highest and lowest possible utility and not, for example, the size of the strategy spaces or 

other details of the game. 
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Theorem 6.1: Suppose 2
1( ( )) 4D P K   .Then there exists an R  and a strict Nash 

equilibrium code-of-conduct r  with 

 0 2
1 1( ) ( ) ( ) ( ( )) 4i iu s u r D P D P K          , for all i . 

 

The proof, which can be found in the Appendix, is simply a computation. The key 

point is that if 1P   then small enough   implies a strict Nash equilibrium of the self-

referential game giving players very nearly what they get at the approximate equilibrium. 

To better understand what the theorem says let us answer the following question: When is 

  small? Not surprisingly we must have 0  small. In addition we must either have E  

small or both P  and 1  small. Recall that we are holding D  the chance of being 

“caught” fixed. Here E  measures how frequently we must punish if nobody deviates. 

The quantities P  and 1  measure how costly the punishment is and how credible it is 

respectively. That is, if P  is large players who carry out punishments stand to lose quite 

a lot compared to sticking at 0s , while if 1  is large players have a lot of incentive to 

deviate from the punishments. These two forces together make any code-of-conduct hard 

to adhere by players. But, we are able to overcome this issue by exploiting the ,E D  

possibility of detection. If E  is small the cost of punishment and lack of credibility do 

not matter, because punishments must only be carried out infrequently on the equilibrium 

path, so there is no sense in risking getting caught violating the code-of-conduct to attain 

what is only a small gain. At the extreme case, when 0E  , the parameter   turns out 

to be 0 . This implies that punishments are not carried out on the equilibrium path if 

nobody deviates. If that the case, the closeness of the strict equilibrium of the code-of-

conduct depends solely on the 0 . The smaller the 0 , the closer our strict equilibrium to 

the approximate equilibrium in the base game.  

 Holding E  fixed is more problematic, because in a general game it is not clear 

how we can choose punishments i
js  that have little cost to the punishers and are also 

credible. Given an 0 -Nash equilibrium 0s  we might expect to be able to find nearby 

approximate equilibrium ( )j
is  which punish player i , but they will not generally have the 

requisite form ( ) ( , )j j j
i is s s  in which just the player j  who detects i  deviates and 

indeed it may be very hard for player j  to punish i  by himself. This problem, however, 

can be solved by allowing cheap talk after detection and before play: player j  simply 

announces that he thinks that i  has violated the code-of-conduct, and if he is the only one 
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to make such an announcement, then all players play ( )j
is . To do this, we may use the 

message structure presented in section 5 with identical timing. Yet, for such a procedure 

to work we need to strengthen the notion of “ ,E D  permits detection” slightly along the 

lines used in the perfect information case. In particular with 3 or more players, we define 

the notion of ,E D  strongly permits detection to mean that if j  detects i  then i  does not 

detect j . We remark that the definition of ,E D  strongly permits detection precludes the 

puzzling scenario in which two players are pointing to each other, but it captures the 

same intuition discussed after Theorem 5.3 (see further discussion in section 5 on 

strongly permits detection). The main difference is that now players who deviate are not 

detected with certainty. 

One class of games that has a very rich structure of approximate equilibrium as 

Radner [1980] pointed out, are repeated games between patient players. In the repeated 

game setting the idea of choosing “equilibria” that punish the punished a lot and the 

punishers a little is very close to that used in Fudenberg and Maskin [1986] to prove the 

discounted folk theorem. Hence it is plausible that in these games we can find many strict 

Nash equilibria of the self-referential game even when E  is fixed and not necessarily 

small. 

7. Repeated Games with Private Information 

 Our goal is to prove a folk-like theorem for games with private information. 

Fudenberg and Levine [1991] consider repeated discounted games with private 

information that are informationally connected in a way described below. They show that 

socially feasible payoff vectors that Pareto dominate mutual threat points are  -

sequential equilibria where   goes to zero as the discount factor   goes to one. Our goal 

is to show that if the game is self-referential in a way that allows some chance that 

deviations from codes-of-conduct are detected (no matter how small is that chance), then 

this result can be strengthened from  -sequential equilibrium to strict Nash equilibrium. 

We follow Fudenberg and Levine [1991] in describing the setup. 

The Stage Game 

The stage game has finite action spaces i ia A  for each player , 1,...,i i N  and 

these are chosen simultaneously. The corresponding action profiles (vector of actions) are 
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denoted a A , while ,i   denote mixed actions and profiles. Each player has a finite 

private signal space i iz Z  with signal profiles written as z Z . Given an action 

profile the probability of a signal profile is given by ( | )z a . This induces also a 

probability distribution for mixed actions ( | )z   as well as marginals over individual 

signals ( | )i iz  . Utility for individual players ( )i iw z  depends only on private signal 

received by that player.11 This gives rise to the expected utility function ( )ig   

constituting the normal form of the stage game. 

A mutual threat point is a payoff vector v  such that there exists a mutual 

punishment action – this is a mixed action profile   such that '( , )i i i ig v    for all 

players i  and mixed actions '
i . We say a payoff vector is mutually punishable if it 

weakly-Pareto dominates a mutual threat point. As is standard, a payoff vector v  is 

enforceable if there is an   with ( )g v  , and if for some mixed action '
i , 

'( , ) ( )i i i ig g     then for some j i  we have '( | , ) ( | )j ji i       . Note that 

every extremal Pareto efficient payoff is enforceable.  

The enforceable mutually punishable set *V  is the intersection of the closure of 

the convex hull of the payoff vectors that weakly Pareto dominate a mutual threat point 

and the closure of the convex hull of the enforceable payoffs. Notice that this is generally 

a smaller set than the socially feasible individually rational set both because there may be 

unenforceable actions, but also because the minmax point may not be mutually 

punishable. Fudenberg and Levine [1991] prove only that the enforceable mutually 

punishable set contains approximate equilibria leaving open the question of when the 

larger socially feasible individually rational set might have this property. They construct 

approximate equilibria using mutual punishment, so in particular there is no effort to 

punish the specific player who deviates. This is necessary because they do not impose 

informational restrictions sufficient to guarantee that it is possible to determine who 

deviated. With additional informational restrictions of the type imposed in Fudenberg, 

Levine and Maskin [1994] it is likely that their methods would yield a stronger result. As 

this is a limitation of the original result, we do not pursue the issue here. 

We now describe the notion of informational connectedness. Roughly this says 

that it is possible for player to communicate with each other even when one of them tries 

                                                
11 We may include the players own action in his signal if we wish. 
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to prevent the communication from taking place. In a two player game there is no issue, 

so we give definitions in the case 2N  . 

We say that player i  is directly connected to player j i  despite player ,k i j  

if there exists a mixed profile   and mixed action î  such that 

  'ˆ( | , , ) ( | )j i k i k j          for all '
k . 

In words, this condition requires that given   being played any player i ’s 

deviation will be detected by some player j  regardless of player k ’s play. We say that i  

is connected to j  if for every ,k i j  there is a sequence of players 1, , ni i  with 

1 , ni i i j   and pi k  for any p  such that player pi  is directly connected to player 

1pi   despite player k . Intuitively, we can always find a “network” between players i  and 

j  so that the message goes through no matter what other single player tries to do. The 

game is informationally connected if there are only two players, or if every player is 

connected to every other player. 

The Repeated Game 

We now consider the T  repeated game with discounting, where we allow both T  

finite and T   . A history for player i  at time t  is ( ) ( (1), (1), , ( ), ( ))i i i i ih t a z a t z t   

while (0)ih  is the null history. A behavior strategy for player i  is a sequence of maps 

( )i t  taking his private history ( 1)ih t   to a probability distribution over iA  with   as 

the profile of behavior strategies. For some discount factor 0 1   we let ( ; , )iu T   

denote expected average present value for the game repeated T  periods. 

In this repeated game a strategy profile   is an  -Nash equilibrium for 0   if 
'( ; , ) ( , ; , )i i i iu T u T        for '

i i  , for each player i . Combining Theorems 

3.1 and 4.1 from Fudenberg and Levine [1991] we have the following theorem: 

Theorem 7.1 (Fudenberg and Levine [1991]): In an informationally connected game if 

*v V  then there exists a sequence of discount factors 1n  , non-negative numbers 

0n   and strategy profiles n  such that n  is an n -Nash equilibrium12 for n  and 

( ; , )i n n iu v    . 

                                                
12 Fudenberg and Levine [1991] prove a stronger result – they show that n  is an n -sequential 
equilibrium which means also that losses from time t  deviations measured in time t  average present value 
and not merely time 0  average present value are no bigger than n . As we do not need the stronger result, 
we do not give the extra definitions required to state the stronger result. 
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We will require one other result from Fudenberg and Levine [1991]. Their 

Lemma A.2 together with their construction in the proof of Theorem 4.1 implies that it is 

possible to construct a communications phase with length L  such that 

Lemma 7.2 (Fudenberg and Levine [1991]): For any 0 1   there exist a pair of 

strategies ',i i   and  for each player j i  a test jZ {( (1), , ( ))}j jz z L   such that for 

any player ,k i j  and strategy '
k  by player k  under '( , , )i k i k     we have 

Prob[( (1), , ( ))i j i jz z L      i jZ ] 1   , and under ' '( , , )i k i k     we have 

Prob[( (1), , ( ))i j i jz z L      i jZ ]  . 

 This says that a player can “communicate” by using his actions whether or not 

someone has deviated. In fact, such communication between players is guaranteed by the 

assumption of information connectedness.  

The Finitely Repeated Self-Referential Game 

In the self-referential case it is convenient to work with finite versions of the 

repeated game. The T -discrete version of the game has finite time horizon T  and 

players have access each period to independent randomization devices that provide a 

uniform over T  different outcomes. 

Thus, the self-referential T -discrete game consists of signal spaces iY  and 

complete codes of conduct space TR , moreover, the signal probabilities are ( | )T y r .  

Theorem 7.3: If  *V  has non-empty interior, if  the game is informationally connected, 

if for some 0, 0E D   the self-referential T  discrete versions ,E D  strongly permits 

detection, and if *v V  then there exists a sequence of discount factors 1n  , 

discretizations nT  and codes of conduct nr  such that nr  is a strict Nash equilibrium for 

,n nT  and ( ; , )i n n n iU r T v  .  

Notice that we do not allow   to go to zero with T . In other words even as the 

game becomes more complex and codes of conduct potentially more elaborate, there is 

still an   chance of detecting a deviation. 

 By Theorem 6.1 it suffices to prove the following result: 

Theorem 7.4: If  *V  has non-empty interior, if the game is informationally connected, if 

for some 0, 0E D   the self-referential T  discrete versions ,E D  permits detection, 

and if int( *)v V  then for any 0 0   there exists a discount factor  , a discretization 
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T  and strategy pairs 0, j
i is s  such that 0s  is an 0 -Nash equilibrium for ,T , 

1 0P     and 3 0P  . 

Proof: First note that by choosing T  large enough for given   it is immediate that 0 -

Nash equilibria of the base game are 02 -Nash equilibria of the discretized game, so 

Theorem 7.1 applies directly to the discretized game. Theorem 7.1 immediately implies 

that for all sufficiently large   we can find a sequence of discount factors with n   

and corresponding nT  together with strategies 0 1, , , Ns s s  such that these are all 

0 /2 -Nash equilibria, that 0
0( ) / 2u s v   , 0 3

0( )( ) ( ) 2j
i i iu s u s    and  

0
0( ) ( ) / 2j j

iu s u s   . 

To construct 0, j
i is s  we begin the game with a series of communication phases. We 

go through the players 1, ,j N   in order each phase lasting L  periods. In the first j -

th phase the player i j  who is able to detect deviations by player j  has two strategies 
'ˆ ˆ,j j

i is s  and players ,k i j  have a strategy ĵ
ks  from Lemma 7.2. In 0

is  player i  plays the 

L  truncation of ĵ
is , alternatively in j

is  he plays the L  truncation of 'ˆj
is . The remaining 

players play the L  truncation of ĵ
ks .  

In 0s , at the end of these NL  periods of communication each player conducts the 

test in Lemma 7.2 to see who has sent a signal. The test is used just like cheap talk in the 

earlier results. If it indicates that exactly one player i  has sent a signal he plays his part of 

the equilibrium js  punishing player j . If the test indicates that exactly two players ,i j  

sent a signal where i  reports that j  has deviated then he plays his part of the equilibrium 
js  punishing j . Otherwise he plays 0s . By Lemma 7.2 by choosing sufficiently large L  

the probability   under any of the strategies 0, js s  that all players agree that a single 

player i  sent a signal (since in fact at most one player has actually sent a signal) or that 

no signal was sent may be as close to 1  as we wish. In particular we may choose   close 

enough to 1 that play following disagreement or agreement on more than one player 

sending a signal has no more than an 0 /4  effect on payoffs. 

Observe that this choice of L does not depend at all on ,n nT , so we may choose 

n  and nT  large enough that nothing that happens in the communications phase makes 

more than a 0 /4  difference to payoffs. This shows that 0, j
i is s  have the desired 

properties. 

 
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 Notice that the structure of Theorem 7.4 differs from that of Theorem 7.1 in an 

important way. In Theorem 7.1 very precise information is accumulated on how players 

have played, and a mutual punishment is used, but so infrequently on the equilibrium 

path it has little cost. By way of contrast, in Theorem 7.4 we have fixed E . This means 

that we must make sure that the cost to the punishers is small relative to the cost to the 

punished. If not, it would be optimal to accept a small punishment in exchange for not 

having to dish out a costly one. Hence we cannot rely on mutual punishments, but must 

target them towards the “guilty.” 

8. Conclusion 

 The standard world of economic theory is one of perfect liars – a world where 

Nigerian scammers have no difficulty passing themselves off as English businessmen. In 

practice social norms are complicated and there is some chance that a player will 

inadvertently reveal his intention to violate a social norm through mannerisms or other 

indications of lying. Here we investigate a simple model in which this is the case. 

Our setting is that of self-referential games, which allows the possibility of 

observing directly opponents’ intentions. We characterized the self-referential nature of 

this class of games by defining codes of conduct – which determine signals conveying 

information about players’ intentions to play, and specify how all players should behave 

according to those signals. This is important because adhering to a code-of-conduct 

represents agreement between players that even have different roles and allows us to 

extend the setup studied by Levine and Pesendorfer [2007] to games with more than two 

players. Several examples explored in our analysis illustrate the applicability of self-

referential games. 

 We have examined when and how codes of conduct matter. In particular, we think 

of codes of conduct as computer algorithm which goes beyond the interpretation that 

players submit computer programs to play. When describing this motivation, we pointed 

out that playing through computer programs is not exclusively relevant per se. In fact, 

recent anthropological research suggests human genes are “programmed” as computer 

codes and behavior recognition between humans ranges from odor to visual cues. 

 Results obtained in the perfect recognition case have the flavor of folk theorems. 

This is possible because of perfect revealing signals that point at deviations from code-of-



 30

conduct and hence deviators are punished with certainty. Also, we weaken the 

assumption about who actually observe these signals. If the set of players receive these 

signals are endowed with the possibility of communication, the results hold. That is, 

players that detect deviations use a message structure (cheap talk signals) to communicate 

with other players needed to implement a punishment. This networking idea was 

introduced by Fudenberg and Levine [1991] and is used later on while proving our folk 

theorem result. Yet we encounter the issue of mutually accusation. As we pointed out 

only a slightly stronger version of permits detection is needed to overcome this issue.  

 In practice the probability of detection is not likely to be perfect, so we then focus 

on the case where the detection probability is small. The key idea is that a little chance of 

detection can go a long way. Small probabilities of detecting deviation from a code of 

conduct allow us to sustain approximate equilibria as strict equilibria of the self-

referential version of the game. Our requirement of approximate punishment strategies 

having only the detector punishing the deviator may look restrictive, however, those 

strategies are ensured simply by allowing cheap talk before play in the same way we did 

in the perfect information case. An illustrative, but far more important, application of this 

result is a discounted strict Nash folk-like theorem. Here playing the game repeatedly and 

likelihood of detecting deviation from a code-of-conduct as information resources 

reinforce each other.  Hence we conclude that approximate equilibria can be sustained as 

“real” equilibria when there is a chance of detecting violations of codes-of-conduct. 
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Appendix: Proof of Theorem 6.1 

To prove Theorem 6.1 we rewrite the necessary information here. Recall that we 

assume fixed signal spaces iY , that R  is a complete code-of-conduct, and that the signal 

probabilities are ( | )y r . The self-referential game is said to ,E D  permit detection 

where 1 , 0,1E D E D     if for every player i  there exists a player j and a set 

j jY Y  such that for any code of conduct r R , any signal j jy Y , and any i ir r  

we have    | , |j j j j
i iy r r y r D      and  |j jy r E   .  

Let the strategy profile 0s  be a 0 - Nash equilibrium giving utility 0u  in the base 

game. Suppose for some profile s  and strategies i
js  for , 1, ,i j N   that ( ) ( , )j j j

i is s s  

are 1 -Nash equilibria satisfying for each player i  ( )
0( ) ( ) 0j

i
i i iP u s u s P     and 

for some 0P   that ( )
0( ) ( )j j j

i
Pu s u s   . Define two parameters   and K   

 0 1( )( ) ,PN u u E         

  4 4max ( ) 3 (1 ) , ( ) 1 ( )K N u u N u u N N u u u u                 . 

Theorem 6.1: Suppose 2
1( ( )) 4D P K   . Then there exists an R  and a strict Nash 

equilibrium code-of-conduct r  with 

 0 2
1 1( ) ( ) ( ) ( ( )) 4i iu s u r D P D P K          , for all i . 

Proof: First we bound the possibility that the “punishment” event occurs on more than 

one randomization device at the same time. Recall that each individual operates N  

randomizing devices in case they should have to report on more than one person. Hence 

there are 2N  independent randomization devices in operations. Thus, the event 

“punishment” does not occur to any player has probability 
2

(1 )NR . The probability 

that the event “punishment” occurs exactly once is 
22 1(1 )NR RN    . From these results 

we find the probability that the event “punishment” occurs twice or more and an upper 

bound for this probability 
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Now we define the code-of-conduct r : for all players i , if i iy Y  and the event 

“punishment” occurs play j
is , otherwise play 0

is .  

The following mutually exclusive events can occur to player i : 

 Nobody is punished: if r  is followed i  gets 0( )iu s , if i  deviates he gets at most 
0

0( )iu s   

 Player j  is the only player punished: if r  is followed i  gets ( )( )j
i iu s , if i  deviates he 

gets at most 1( )( )j
i iu s   

 Two or more players are punished: if r  is followed i  gets at worst u , if i  deviates he 

gets at most  u  

Hence if all players follow the code player i  gets no more than 

 0 4 2( ) (1 (1 ) ) ( ) ( )N
i p Ru s E N u u          

and no less than  

 0 4 2( ) (1 (1 ) ) ( ) ( ) ( | )N
i p R j j R iu s E N u u y r P            . 

If i  violates the code, and everybody else follows the code, he gets no more than 

 
0 4 2

0 1
4 2

1

( ) (1 (1 ) ) ( ) ( )

( ( | ) ) ( ) ( )

N
i R

j j R R i

u s E N u u

y r D N P

  

   

        
      

 

Consequently the gain to violating the code is at most 
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           Hence if 2
1( )R RD P K       then there is a strict Nash equilibrium with  
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 We conclude by solving the inequality for R . The roots of the quadratic equation 

are 
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which gives two real roots since 1
2( ( )) 4D P K   , implying the existence of an R  

for which r  is strict. Plugging the lower root into the inequality for the utility difference 
0( ) ( )i iu s u r  gives the remainder of the result. 

 

 


